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sor, Ing. Marting Jiroušek, for his invaluable help, guidance, and willingness throughout the
preparation of this thesis. Working under his supervision has greatly enhanced my skills and
knowledge, for which I am truly grateful. Lastly, I would like to thank all the members of the
Multi-robot Systems Group (MRS) for their assistance during the MRS camp, from which I
gained many fond memories and valuable lessons in robotics.



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

516507 Personal ID number:  Kahoun  Josef Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Cybernetics and Robotics Study program: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Attitude-Aided Control of Leader-Follower Unmanned Aerial Vehicle Formation  

Bachelor’s thesis title in Czech: 

Řízení formace bezpilotních letounů typu leader-follower s využitím údajů o náklonu  

Guidelines: 

The objective of this thesis is to design, implement and validate a control scheme for a leader-follower UAV formation that 
minimizes position tracking error by leveraging attitude measurements of the leader UAV. Traditional approaches based 
solely on position observations often suffer from delayed responses due to limited information about the leader’s dynamics. 
This thesis will address this limitation by developing an estimator-predictor that utilizes noisy pose measurements (position 
and orientation) to estimate the current state and predict the short-term trajectory of the leader UAV. The designed controller 
will use this prediction to improve the tracking performance of the follower UAV. The developed control scheme should 
be implemented in C/C++ within the ROS framework and tested using the MRS UAV system. The solution's effectiveness 
will be assessed in simulation and, if feasible, through real-world experiments. 
Student tasks: 
1) Study UAV control techniques, with a focus on the leader-follower problem. Familiarize yourself with Model Predictive 
Control (MPC) for UAVs. Review state estimation and prediction methods for dynamic systems. 
2) Understand the ROS framework and the MRS UAV system. 
3) Develop an estimator that fuses noisy pose measurements (position and orientation) to estimate the leader UAV’s 
current state. Extend the estimator or implement a separate module to predict the short-term future trajectory of the leader 
UAV. 
4) Design and implement an MPC-based controller that utilizes the estimated/predicted state of the leader UAV. Choose 
between two control output options: (a) target collective thrust and attitude or (b) target collective thrust and attitude rate. 
5) Conduct simulations to evaluate system performance. Compare tracking accuracy with and without leader attitude 
measurements. Analyze the robustness of the algorithm under imperfect data conditions. 
6) If hardware is available, perform real-world flight tests to validate the algorithm. 

Bibliography / sources: 

1. J. Kim, S. A. Gadsden, and S. A. Wilkerson, "A comprehensive survey of control strategies for autonomous quadrotors," 
Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 1, pp. 3–16, Winter 2020, doi: 
10.1109/CJECE.2019.2920938. 
2. H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, "Model predictive control for micro aerial vehicles: A survey," in Proc. 
2021 European Control Conference (ECC), Delft, Netherlands, 2021, pp. 1556–1563, doi: 
10.23919/ECC54610.2021.9654841. 
3. M. Z. A. Rashid et al., "Comprehensive review on controller for leader-follower robotic system," Indian Journal of Geo 
Marine Sciences, vol. 48, no. 7, Jul. 2019. [Online]. Available: http://nopr.niscpr.res.in/handle/123456789/48866. Accessed: 
Jan. 30, 2025. 
4. P. Shukla, S. Shukla, and A. K. Singh, "Trajectory-prediction techniques for unmanned aerial vehicles (UAVs): A 
comprehensive survey," IEEE Communications Surveys & Tutorials, 2024, doi: 10.1109/COMST.2024.3471671. 
5. T. Baca, M. Petrlik, M. Vrba, et al., "The MRS UAV system: Pushing the frontiers of reproducible research, real-world 
deployment, and education with autonomous unmanned aerial vehicles," Journal of Intelligent & Robotic Systems, vol. 
102, no. 26, 2021, doi: 10.1007/s10846-021-01383-5. 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Name and workplace of bachelor’s thesis supervisor: 

Ing. Martin Jiroušek    Multi-robot Systems  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   __________ Date of bachelor’s thesis assignment:   03.02.2025 

Assignment valid until:   20.09.2026 

___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Vice-dean´s signature on behalf of the Dean 
prof. Dr. Ing. Jan Kybic 

Head of department’s signature 

III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



FAKULTA ELEKTROTECHNICKÁ 
FACULTY OF ELECTRICAL ENGINEERING 
Technická 2 
166 27 Praha 6 

DECLARATION 

I, the undersigned 

Kahoun Josef Student's surname, given name(s): 
516507 Personal number: 
Cybernetics and Robotics Programme name: 

declare that I have elaborated the bachelor’s thesis entitled 

Attitude-Aided Control of Leader-Follower Unmanned Aerial Vehicle Formation 

independently, and have cited all information sources used in accordance with the Methodological Instruction 
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules 
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing 
Master’s Programmes. 

I declare that I used artificial intelligence tools during the preparation and writing of this thesis. I verified the 
generated content. I hereby confirm that I am aware of the fact that I am fully responsible for the contents of 
the thesis. 

Josef Kahoun In Prague on 18.05.2025 
................................................ 

student's signature 



vi

Abstract

This thesis presents the design, implementation, and evaluation of a control algo-
rithm for a one-to-one leader-follower Unmanned Aerial Vehicle (UAV) formation,
which exploits the attitude measurements of the leader UAV to minimize the tracking
error. The UAV dynamics were studied, from which a linear mathematical model was
derived. To estimate the states of the leader UAV, a Linear Kalman Filter (LKF) was
designed, which utilized both the position and attitude measurements of the leader.
Based on these estimates, a short-term trajectory predictor was built to forecast
the leader’s future states. The closed-loop control was achieved using a Quadratic
Programming Model Predictive Control (QP-MPC), which utilized the predicted
trajectory in order to improve the tracking performance. To assess the benefit of
the attitude measurements, a baseline controller using only position measurements
was also developed. The proposed system was rigorously tested both in simulation
and real-world scenarios, demonstrating that incorporating attitude measurements
significantly improves tracking performance. The algorithm’s robustness to varying
noise levels and update rates of the attitude measurements was also evaluated.

Keywords Unmanned Aerial Vehicle, Leader-Follower formation, Attitude mea-
surements, Model Predictive Control, Kalman Filter, Trajectory prediction
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Abstrakt

Tato práce se zabývá návrhem, implementaćı a vyhodnoceńım ř́ıdićıho algo-
ritmu pro formaci typu leader-follower (v̊udce-následovńık) s jedńım bezpilotńım
letounem (UAV) v každé roli, který využ́ıvá měřeńı náklon̊u v̊udč́ıho UAV ke
sńıžeńı chyby sledováńı. Dynamika UAV byla studována a na jej́ım základě byl
odvozen lineárńı matematický model. Pro odhad stav̊u v̊udč́ıho UAV byl navržen
lineárńı Kalman̊uv filtr, který využ́ıval jak měřeńı polohy, tak měřeńı náklon̊u v̊udce.
Na základě těchto odhad̊u byl vytvořen krátkodobý prediktor trajektorie, který
předpov́ıdal budoućı stavy v̊udce. Zpětnovazebńı ř́ızeńı bylo realizováno použit́ım
prediktivńıho ř́ızeńı založeného na kvadratickém programováńı (QP-MPC), které
využ́ıvalo předpovězenou trajektorii za účelem vylepšeńı sledováńı. Pro posouzeńı
př́ınosu měřeńı náklon̊u byl vyvinut referenčńı regulátor, který pracoval pouze s
měřeńımi polohy. Navržený systém byl d̊ukladně otestován v simulaci i v reálném
prostřed́ı, přičemž bylo dokázáno, že využit́ı měřeńı náklon̊u výrazně zlepšuje
přesnost sledováńı. Robustnost algoritmu v̊uči r̊uzným úrovńım šumu a r̊uzným
frekvenćım měřeńı byla rovněž vyhodnocena.

Kĺıčová slova Bezpilotńı Prostředky, Formace typu v̊udce-následovńık, Měřeńı
náklon̊u, Prediktivńı ř́ızeńı na základě modelu, Kalman̊uv filtr, Predikce trajektorie
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1 Introduction

Multi-Agent Systems of Unmanned Aerial Vehicles (UAVs) have gained significant pop-
ularity in recent years due to their broad application in both civilian and military domains. In
the military sector, UAVs are commonly employed for reconnaissance [1][2], surveillance [3],
and search and rescue missions [4]. In the civilian field, drone swarms are largely being used
in the entertainment industry [5], payload transportation [6], infrastructure mapping [7], etc.

However, the control of such systems poses additional challenges, particularly the risk
of collisions between the UAVs. To mitigate this, various swarm control strategies have been
developed. One of which is the widely adopted approach known as the Leader-Follower [8][9],
where all UAVs (followers) track the trajectory of the designated leader UAV while consistently
upholding a given relative position.

In order to further enhance the responsiveness and accuracy of the followers, researchers
have been trying to predict the leader’s future trajectory [10]. Provided with the information
about the future development of the leader’s trajectory, the follower UAV can implement
preemptive actions, allowing for a much smoother and more accurate tracking. The task of
trajectory prediction proves useful not only for control, but can also be useful for trajectory
planning [11] and aerial defense [12][13] applications.

1.1 Motivation

For the follower UAV to track the leader UAV swiftly and accurately, predicting the
leader’s trajectory is highly advantageous. With access to the leader’s future states, the fol-
lower can act preemptively, resulting in smoother and more responsive tracking.

In cases where the leader’s trajectory is relatively simple—f.e. flying in a straight line
at constant speed—knowledge of the UAV’s current velocity is sufficient for an accurate pre-
diction. However, during agile maneuvers, such as abrupt changes in flight direction, this
information becomes inadequate. In such scenarios, both velocity and acceleration need to be
known for a reliable prediction.

If only position is measured, acceleration becomes visible only after the motion has fully
started, as it must be estimated through the second-order differentiation. On the other hand,
if attitude data1 is available, tilting behavior can be observed before a position change occurs.
Since the attitude of the UAV is directly tied to its acceleration, this effectively enables us to
detect a shift in the direction of movement much earlier.

If this presumption proves valid, incorporating attitude measurements into trajectory
prediction could make control algorithms significantly more responsive to sudden changes in
the leader’s motion, and thus minimize the overall tracking error and delay.

1.2 Task Setup

The goal of this thesis is to design, implement, and evaluate the performance of a control
system for a one-to-one Leader-Follower scheme, which implements noisy measurements of
both the position and attitude of the leader UAV. The algorithm will control the follower’s
motion, while the leader will follow a predefined trajectory. The proposed control system will

1The knowledge about the UAV’s rotation in the world.

CTU in Prague Department of Cybernetics
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be comprised of three main components: state estimation, short-term trajectory prediction,
and the control algorithm. The whole pipeline is shown in Figure 1.1.

Leader

Follower

Follower
UAV

Leader state
Estimation

Trajectory
Prediction

Leader UAV
Reference
Trajectory

+
Measurement

Noise

Control
Algorithm

Follower
State

Estimation

+

sensors

x̂L

x̂F

sensors

Figure 1.1: Outline of the system pipeline. The parts highlighted in green show the components
to be implemented in this thesis. x̂L, x̂P represent unspecified estimates of the leader/follower
UAV states.

The attitude estimation of the leader is assumed to be provided externally, and therefore
won’t be implemented as a part of this thesis; however, the influence of the measurement noise
and update rate of the readings will be thoroughly evaluated. The complete system is to be
implemented in C++ and deployed on the UAV’s onboard computer.

The structure of the thesis is as follows. In chapter 2, the linear model needed for control
is derived together with the identification of unknown parameters. Chapters 3, 4, 5 cover
the design of the leader state estimation, trajectory prediction, and the control algorithm,
respectively. The implementation of the algorithms and tuning of the parameters are explained
in chapter 6. Finally, the experiments evaluating the performance of the whole pipeline are
presented in chapter 7.

1.3 Related Work

1.3.1 Control Algorithms

The leader-follower scheme is largely utilized in not just UAV swarms, but in almost
every other multi-agent robotic system. As such, numerous control algorithms have been used
and shown to be competent in the task of trajectory tracking in leader-follower formation [14].

Sliding Mode Control (SMC), a nonlinear control method which tries to drive the system
state along a predefined ’sliding surface’, has been used by researchers to control surface vessels
[15] or UAVs [16].

From the realm of optimal control, approaches such as Linear-Quadratic Regulator
(LQR), H∞ [17] and Model Predictive Control (MPC) have been widely utilized in formation
control. In [18], a two-layer distributed MPC controller has been designed by separating the
UAV’s dynamics into translation and rotation motions, thus reducing the computational load.

CTU in Prague Department of Cybernetics
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[19] introduced a combination of SMC and LQR controllers to successfully solve the multiple
quadrotor formation problem.

Intelligent control schemes, such as neural networks [20] or reinforcement learning [21],
have grown in popularity in recent years. Controllers based on fuzzy logic, a logic where truth
values need not be binary, but may be any real number between 0 and 1, have also been
utilized for both trajectory tracking [22] and formation control [23].

1.3.2 Trajectory Prediction

Basic methods for trajectory prediction include polynomial regression, which fits a curve
to the UAV’s past motion, using most commonly the Least-Squares Method, but this method is
often prone to overfitting or underfitting. A simple alternative is to assume constant velocity
or acceleration, but this approach is limited by the lack of information about the system
dynamics.

More advanced techniques include the use of the Kalman Filters. In [24], the prediction
step of the Linear Kalman Filter (LKF) is utilized to predict the future state of the UAV. A
great advantage of this method is that it obtains covariance matrices as a side product of the
prediction, providing probabilistic confidence in every predicted state.

A state-of-the-art approach involves Machine Learning (ML). The task of trajectory
prediction is suitable for Recurrent Neural Networks (RNNs), which excel at processing se-
quential data, such as text, speech, or time series. In [25][26], a special type of RNN called
Long Short-Term Memory (LSTM) is utilized to predict the future trajectory.

Another prominent ML approach is Gaussian Process (GP) Regression [27], which, un-
like most ML models, returns a whole probabilistic distribution rather than the most probable
value, making it much more suitable for capturing uncertainties.

Many other ML architectures have been explored. In [28], a Gated Cyclic Convolution
Neural Network is utilized, a special type of RNN, much like LSTM. Originally developed for
language processing, transformers [29] can also be adapted for trajectory prediction, and in
[30], transformers were used to successfully predict trajectories of multi-agent UAV systems.

1.4 Contribution

This thesis focuses on improving the responsiveness of a follower UAV in a Leader-
Follower configuration by incorporating attitude measurements of the leader UAV into tra-
jectory prediction. The main contributions of this work are as follows:

(i) Implementation of a control framework and a short-term trajectory predic-
tion algorithm that integrates both the position and attitude measurements of the
leader UAV, as well as a reference framework which will not utilize the attitude mea-
surements.

(ii) Comparison of the performance of both controllers in a simulated environment
and in the real world, highlighting the impact of attitude information on the tracking
accuracy.

(iii) Evaluation of the effect of measurement noise and update rate of the attitude
measurements on the performance of the controller.

CTU in Prague Department of Cybernetics
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1.5 Mathematical Notation

In this thesis, the mathematical notation described in Table 1.1 is utilized.

x, k scalar
x, α vector, pseudo-vector, or tuple
X,Ω matrix
I identity matrix
x⊤,X⊤ transposed vector/matrix
xr xr is desired, a reference
x[n]/xn x at the sample n
xk|k−1 x at the sample k, conditioned by data obtained at the sample k − 1
Rx(α) rotation matrix coding rotation around x-axis by the angle α (likewise for y and z axes)
RB
A rotation matrix from coordinate system A to coordinate system B

ϕ, θ, ψ roll, pitch and yaw angles
L{·} Laplace transform

ẋ/dx
dt
, ẍ/d2x

dt2
1st and 2nd time derivative of x

∂f(x,y)
∂x

partial derivative of a function
∆x a change/difference/increment of x
a ∧ b a logical and b
A,B,x,u LTI system matrix, input matrix, state vector and input vector
c⊤x scalar product

∇f(x) =
df(x)
dx

⊤
gradient of a function

∇xf(x,y) =
∂f(x,y)
∂x

⊤
partial gradient of a function

Table 1.1: Mathematical notation, nomenclature and notable symbols.

CTU in Prague Department of Cybernetics
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2 Model

2.1 Coordinate Systems

In order to unambiguously define the position and attitude of the UAV, we need to
properly define the roll-pitch-yaw angles (denoted by ϕ, θ and ψ, respectively) and the related
coordinate systems: the World frame (denoted by W) and the Body frame (denoted by B).

The origin of the World frame is fixed in space, with its x and y axes generating the
horizontal plane, its z axis perpendicular to it, forming a right-handed coordinate system.
The Body frame’s origin is placed at the UAV’s center of mass, its axes fixedly connected to
the frame of the UAV.

To transform between these two systems, roll, pitch, and yaw—a special case of Tait-
Bryan angles that follow the ZYX rotation order—are used. The Body frame is obtained by
firstly rotating around the z-axis by an angle of ψ (yaw), then by rotating around the newly
created y-axis by an angle of θ (pitch), and finally by rotating around the new x-axis by an
angle of ϕ (roll). The coordinate frames are depicted in Figure 2.1. We can write this rotation
utilizing the rotation matrices

Rx(ϕ) =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 ,

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 ,

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 .
Following the given rotation order, the transformation from the Body frame to the

World frame can be written as

RW
B (ϕ, θ, ψ) = Rz(ψ)Ry(θ)Rx(ϕ). (2.1)

2.2 Control Loop

Since controlling the individual rotors of a UAV is manually impossible for a normal
human, most UAVs employ an inner control loop. This loop, implemented by the flight con-
troller, takes as input the reference roll-pitch-yaw angles ϕr, θr, ψr

1 and the collective thrust
Tr (the force along the z-axis of the Body frame), and adjusts the individual rotors accordingly
to achieve the references.

1Another common implementation of the inner control loop takes as an input not the reference attitude,
but rather reference attitude rates, but this approach will not be utilized in this thesis.
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x′
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z2

θ

yB

xB
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φ

Figure 2.1: The UAV coordinate frames. The coordinate frame with the subscript W is the
World frame, B is the body frame. Frames 1 and 2 are the coordinate frames obtained after
applying the yaw and pitch rotations, respectively. The dashed frame (x′1, y

′
2, z

′
3) represents

translated frame 1.

The outer control loop devised in the subsequent chapter controls the reference angles
and thrust to achieve the given positional reference; therefore, the dynamics of the inner
control loop must be taken into account when designing the outer control loop. The whole
control scheme is shown in Figure 2.2

Outer control loop Inner control loop

Controller
Flight

controller
UAV

ωR

ϕ, θ, ψ, T

ϕR, θR, ψR, TR

x

r

Figure 2.2: The whole control loop diagram. r represents a general reference, x are non-specific
UAV states. ωR is the reference vector of angular velocities for each individual rotor.

2.3 UAV Dynamics

We derive the motion equations using Newton’s second law of motion. The UAV gen-
erates thrust alongside the z-axis of its Body frame, while gravity acts on the UAV in the
z-direction of the World frame. Other disturbances (e.g. drag) are neglected for the sake of
simplicity.

Using the rotation matrix (2.1) to transform the thrust vector into the World frame, we
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can write Newton’s equations asẍWÿW
z̈W

 =
1

m
RW

B (ϕ, θ, ψ)

0
0
T

−
00
g

 .
Upon substituting the rotation matrix, we can derive the following equations for the drone
accelerations in the world frameẍWÿW

z̈W

 =
T

m

cosψ sin θ cosϕ+ sinψ sinϕ
sinψ sin θ cosϕ− cosψ sinϕ

cos θ cosϕ

−
00
g

 . (2.2)

2.4 Flight Controller Dynamics

As discussed, the inner control loop receives the reference attitude and thrust, and
controls the individual rotors to achieve the given reference. Based on assumptions made in
[31], we model the inner loop for each input as a first-order system:

L{ϕ}
L{ϕr}

=
K1

1 + τ1s
,

L{θ}
L{θr}

=
K2

1 + τ2s
,

L{ψ}
L{ψr}

=
K3

1 + τ3s
,

L{T}
L{Tr}

=
K4

1 + τ4s
,

where τ1,2,3,4 are time constants and K1,2,3,4 are the gains.

For each first-order system (we will show the process for just the first one), we can easily
find the differential equation in the time domain by multiplying both sides of the equation
and using the inverse Laplace transform

L{ϕ} (1 + τ1s) = K1L{ϕr},

ϕ(t) + τ1
dϕ

dt
= K1ϕr(t),

finally, by rearranging the terms and dividing the whole equation, the formula for the differ-
ential equation of the first-order system is obtained

dϕ

dt
=
K1

τ1
ϕr(t)−

1

τ1
ϕ(t). (2.3)

2.5 The State Space Model

The state space model is an intuitive mathematical representation of the dynamics of
the system, which can be generally written as

ẋ(t) = f (x(t),u(t)) , (2.4)
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where x is the state vector containing state variables, which provide information about the
current properties of the system, and u is the input vector, containing current inputs for the
system.

In the case of this thesis, we choose position, velocity, attitude, and thrust for the states2

x =
[
x y z vx vy vz ϕ θ ψ T

]⊤
.

The control variables correspond to the inputs of the inner control loop, meaning the reference
attitude and collective thrust

u =
[
ϕr θr ψr Tr

]⊤
.

Combining the UAV dynamics (2.2), and the dynamics of the inner control loop (2.3), the
overall nonlinear state space model for the UAV can be written as

ẋ
ẏ
ż
v̇x
v̇y
v̇z
ϕ̇

θ̇

ψ̇

Ṫ


=



vx
vy
vz

T
m (cosψ sin θ cosϕ+ sinψ sinϕ)
T
m (sinψ sin θ cosϕ− cosψ sinϕ)

T
m (cos θ cosϕ)− g

K1
τ1
ϕr − 1

τ1
ϕ

K1
τ1
θ − 1

τ1
θ

K1
τ1
ψr − 1

τ1
ψ

K1
τ1
Tr − 1

τ1
T


. (2.5)

2.6 Linearized Model

So far, only nonlinear equations have been derived. In order to utilize the linear controller
used in this thesis, the nonlinear equations need to be linearized around an equilibrium point.
Generally, the continuous Linear Time-Invariant (LTI) system can be written as

ẋ(t) = Ax(t) +Bu(t),

y(y) = Cx(t) +Du(t).
(2.6)

In order to obtain the LTI model from our nonlinear equations, we first need to set an equi-
librium point (x0,u0), around which we will linearize the equations. We utilize the Taylor
expansion of the general transfer function (2.4) around the equilibrium point

ẋ(t) ≈ f(x0,u0) +
∂f(x0,u0)

∂x
(x(t)− x0)︸ ︷︷ ︸

∆x(t)

+
∂f(x0,u0)

∂u
(u(t)− u0)︸ ︷︷ ︸

∆u(t)

.

The equilibrium point, such as the name suggests, is chosen such that the system is in equi-
librium, meaning that the states do not change. Therefore, the time derivatives of the states
are zero, i.e. that f(x0,u0) = 0. Upon substituting A = ∂f(x0,u0)

∂x and B = ∂f(x0,u0)
∂u , we can

write the LTI system as
ẋ = A∆x(t) +B∆u(t).

The absolute value of the state vector at any given time can be obtained as x(t) = x0+∆x(t).

2Here on out, the position and velocity are in the World frame coordinates, therefore, no superscripts are
used.
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2.6.1 Linearization

The linearized state space matrices A,B are computed by using the standard lineariza-
tion method:

A =


∂f1(x0,u0)

∂x1
. . . ∂f1(x0,u0)

∂xn
...

. . .
...

∂fn(x0,u0)
∂x1

. . . ∂fn(x0,u0)
∂xn

 ,

B =


∂f1(x0,u0)

∂u1
. . . ∂f1(x0,u0)

∂um
...

. . .
...

∂fn(x0,u0)
∂u1

. . . ∂fn(x0,u0)
∂um

 ,
where n is the number of states, m is the number of inputs, (x0,u0) is the equilibrium point,
and f1,...,n are the individual components of the nonlinear transition model.

To find the equilibrium point, we set the state equations (2.5) equal to zero, resulting
in multiple periodical possible solutions. Since we, however, require only one model, we select
the following equilibrium conditions:

T = mg ∧ ϕ = 0 ∧ θ = 0 ∧ ψ = 0. (2.7)

These conditions were chosen based on symmetry around the Tait-Bryan angles, which makes
this point the most suitable for our application.

Upon calculating the partial derivatives and substituting the chosen equilibrium point,
we obtain the following sparse matrices

A =



0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 g 0 0
0 0 0 0 0 0 −g 0 0 0
0 0 0 0 0 0 0 0 0 1

m
0 0 0 0 0 0 − 1

τ1
0 0 0

0 0 0 0 0 0 0 − 1
τ2

0 0

0 0 0 0 0 0 0 0 − 1
τ3

0

0 0 0 0 0 0 0 0 0 − 1
τ4


,

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
K1
τ1

0 0 0

0 K2
τ2

0 0

0 0 K3
τ3

0

0 0 0 K4
τ4


.
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2.7 Yaw Constraint

If the yaw were to change significantly, the linearized equations would become inaccu-
rate. To prevent this, we introduce an additional constraint on our system, and that is that the
yaw angle is always equal to zero. This means that the controller outputs 0 for the reference
yaw angle at all times.

While the yaw constraint may seem limiting, in our case, the follower relies on measuring
the relative position of the leader. Therefore, fixing the yaw to be constant is an adequate
choice, as it simplifies the measurement process. The yaw could be set to an arbitrary value,
but for the sake of simplicity, we chose zero.

2.8 Discretization

Since most of the controllers operate in discrete time, we need a way to transform the
previously derived continuous-time model to discrete time. The simplest way to do so is to
utilize the Forward (Explicit) Euler method. Generally, this method can be written as

x[k + 1] = x[k] + Tsf(x[k],u[k]),

where f is the transition function, and Ts is the sampling time.

Applying this to the case of a linear state model, we can substitute for f

x[k + 1] =x[k] + Ts(Ax[k] +Bu[k]) = (I+ TsA)︸ ︷︷ ︸
Ad

x[k] + TsB︸︷︷︸
Bd

u[k]

=Adx[k] +Bdu[k],

receiving the system matrices in the discrete time as Ad = I+ TsA and Bd = TsB.

2.9 Identification

Identification of the parameters was done by sending a step reference to the inputs
of the inner controller and collecting the data. Subsequently, a first-order step response was
iteratively fitted by hand by changing the gain and time constant parameters.

For the angle identification, a step reference of height 0.5 (to not recede far away from
the equilibrium point) was used, and for the thrust, a value of 1 was sent. For the attitude
identification, we read directly the ground truth measured angles; for the thrust, we read the
acceleration in the z-axis az. Since all Tait-Bryan angles were set to zero, the current thrust
could be obtained simply by T (t) = maz(t), where m is the mass of the UAV.

The behavior of the roll and pitch subsystems was presumed to be equivalent, which
proved true in the simulations. We settled on the following parameters: K1 = K2 = 1, τ1, τ2 =
0.15 for the roll and pitch subsystems3, and K4 = 1, τ4 = 0.1 for the thrust subsystem. The
comparison of the step responses of the real and fitted subsystems is shown in Figure 2.3.

3The identification of the yaw subsystem was not conducted, as it is not needed due to our introduced
constraint.
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(b) Identification of the thrust subsystem
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Figure 2.3: Identification of the inner control loop parameters for the roll (a) and thrust (b).
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3 Leader State Estimation

To follow the leader’s trajectory, the follower UAV requires information about the
leader’s state to utilize in the feedback control loop. This data is typically obtained through
the use of different sensors depending on the application. However, direct sensor data is inher-
ently noisy and differs from the ground truth—the real values of the physical quantities being
measured. Therefore, a method for filtering out the noise from the acquired data is necessary.

3.1 Linear Kalman Filter

The LKF is a specialized type of estimator used in the control loop. It is a recursive
algorithm that estimates the hidden states of the system by minimizing the Mean Squared
Error (MSE) of the estimates.

3.1.1 Stochastic Model

The LKF assumes a discrete-time linear model defined by 2 equations: the state tran-
sition and the observation.

(i) State Transition (Process Model)
The state transition equation can be written as

xk+1 = Axk +Buk +wk, wk ∼ N (0,Qk) ,

where xk,uk are the state and input vectors at time k, respectively, A,B are the state
and input matrices, and wk is the process noise.

(ii) Observation (Measurement Model)
The measurement model equation is described by

zk = Hxk + vk, vk ∼ N (0,Rk) ,

where zk is the measured system output at time k, H is the system output matrix,
which maps the states to the outputs/measurements, and vector vk is the measurement
noise.

Noticeably, the LKF model is almost identical to the LTI model defined in (2.6)1, with
the addition of the modeled noises. Both noises are assumed to be white, i.e. all frequencies
have the same intensity, and to be sampled from the Gaussian distribution. Specifically, dis-
tributions for the process and measurement noise are zero-mean, with the covariance given
by covariance matrices Qk and Rk, respectively. In real-world applications, the noises rarely
adhere to the white Gaussian specification. However, approximating them as such proves to
be sufficient in most practical cases.

3.1.2 The Algorithm

The LKF computes the estimated state vector x̂k and the associated estimated covari-
ance Pk, which models the uncertainty of each state estimate. Each iteration consists of two
steps:

1The feedthrough matrix D is considered to be zero, as is most often the case.
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(i) Prediction (Time Update)
The prediction step gives apriori estimation of the state and covariance in the next
timestep, and is given by two equations,

x̂k+1|k = Ax̂k|k +Buk,

Pk+1|k = APk|kA
⊤ +Qk.

(3.1)

x̂k+1|k is the state vector estimation for time k + 1 conditioned by the information
obtained from measurements at step k, likewise, the x̂k|k is the state vector estimation
for time k using the data available at time k, uk is the system control input at current
step k, and Qk is the process noise covariance matrix at time k. The same math notation
used for the state estimates concerns the covariance estimates P.

(ii) Correction (Measurement Update)
The correction step uses the current acquired noisy measurements to correct the apriori
estimation of both the state vector and covariance. Firstly, the Kalman Gain Kk+1 is
calculated from the the current covariance estimation. It tells the filter how much to
trust the new measured data, and how much of it to use to correct the apriori state and
covariance estimates. Then, the state estimation for the next timestep x̂k+1 is obtained
with the measured data zk+1, and finally the covariance P is updated.

Kk+1 = Pk+1|kH
⊤
k+1

(
Hk+1Pk+1|kH

⊤
k+1 +Rk+1

)−1
,

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
zk+1 −Hk+1x̂k+1|k

)
,

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k.

(3.2)

3.2 LKF Model

The need for a LTI model is apparent from the equations (3.1) and (3.2), however, the
model derived in chapter 2 cannot be used directly, as it requires the leader’s control inputs,
which are unavailable to the follower UAV. A new model must therefore be constructed.

3.2.1 State Definition

In the model from chapter 2, the control inputs were the reference roll, pitch, and yaw
angles, and the reference thrust. One approach would be to take out the inner control loop
and use just the current measured angles as an input. However, the mathematical model of
the LKF cannot model input noise, which is expected to be non-negligible. We therefore treat
the angles and thrust as states and refine them only in the update step as a part of our
measurement. We also add the angular velocities to the state variables, yielding the resulting
state vector x = [x, y, z, vx, vy, vz, ϕ, θ, ψ, ωϕ, ωθ, ωψ, T ]

⊤ with a total of 13 state variables.

3.2.2 Transition Model

Now, the transition model can be written, mostly similar to the one from equation (2.5),
with the added influence of angular velocities. We cannot obtain the differential equations for
the angular velocities and the thrust, as we do not have a model for them. We therefore make
the assumption that these states stay constant (the differential equations are zero), with the
associated modeling error captured in the process noise. This results in the following nonlinear

CTU in Prague Department of Cybernetics



14/46 3.2. LKF MODEL

differential equations 

ẋ
ẏ
ż
v̇x
v̇y
v̇z
ϕ̇

θ̇

ψ̇
ω̇ϕ
ω̇θ
ω̇ψ
Ṫ



=



vx
vy
vz

T
m (cosψ sin θ cosϕ+ sinψ sinϕ)
T
m (sinψ sin θ cosϕ− cosψ sinϕ)

T
m (cos θ cosϕ)− g

ωϕ
ωθ
ωψ
0
0
0
0



. (3.3)

3.2.3 Linearized System Matrices

By linearizing around the equilibrium point from (2.7), we obtain the following linear
system matrix

ALKF =



0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

m
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



. (3.4)

The input matrix BLKF is zero since there are no control inputs. The output matrix H is
constructed based on the available measurements, which consist of the position and orientation
of the UAV, creating

H =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

 . (3.5)

Since we linearized around the equilibrium point (2.7), the differential equations for the
horizontal velocities assume a constant thrust T = mg, and therefore a constant height. As a
result, during tuning and experiments, we only use trajectories flown at a constant height.
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4 Trajectory Predictor

When dealing with agile movement, setting the follower only the current reference po-
sition may be shortsighted, as by the time it reaches the given position, the leader’s refer-
ence may have already changed. Obtaining information about the future development of the
leader’s trajectory can improve the performance of the tracking algorithm and reduce both
the tracking error and delay in the follower’s motion.

Furthermore, this approach allows to fully utilize the attitude measurements, as their
main benefit lies in providing better estimates of the leader’s acceleration. As a result, pre-
dicting the trajectory during sudden changes in the direction of movement becomes more
reliable.

4.1 LKF Prediction

As discussed earlier, the LKF provides an estimate of the current states of the leader
UAV. We can extend this by using the prediction step of the LKF (3.1) to iteratively predict
the UAV’s future states. Starting from the current state estimate x̂[t] and corresponding
covariance matrix P[t], we apply the prediction step and obtain the resulting state prediction
x̂[t+ 1] and covariance matrix P[t+ 1]. The prediction step is ultimately repeated N times,
where N is the desired length of the prediction. This process yields an array of state estimates
and associated covariance matrices, each one specified at time kTs, where k is the index of
the prediction, and Ts is the sampling period of the LKF model. It is also apparent that
the total time span of the prediction can be computed as NTS . The covariance matrices
P[t], . . . ,P[t + N ] may seem just as a side product. However, each matrix can be used to
assess the confidence in the corresponding reference position—that is, the probability that
the predicted position will actually be reached by the leader. The whole pseudo-algorithm for
the trajectory prediction is shown in Algorithm 1.

Algorithm 1 Trajectory prediction

1: T ← new array of size N + 1 ▷ N is the number of prediction steps
2: xtmp ← x̂ ▷ Initialize with the current LKF estimation
3: Ptmp ← P
4: T [0]← (xtmp,Ptmp) ▷ We want to save the current estimation
5: for i = 1 to N do
6: xtmp,Ptmp ← prediction step(xtmp,Ptmp)
7: T [i]← (xtmp,Ptmp)
8: end for
9: return T

4.2 Nonlinear Prediction

We can further improve prediction accuracy by using the nonlinear equations (3.3)
directly instead of relying on the linear approximation. However, by predicting using just the
nonlinear equations, we lose the covariance matrices, thereby losing the valuable information
about the uncertainty of the predictions. We therefore utilize the LKF-based prediction to
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generate covariance matrices, while replacing the predicted state means with those obtained
from the nonlinear equations.

It’s worth noting that a nonlinear variant of the Kalman Filter, namely the Unscented
Kalman Filter (UKF) [32] has been implemented and tested for both estimation and trajectory
prediction. While the LKF and the UKF proved almost equal in the estimation domain, the
prediction of the trajectory utilizing the UKF was more accurate. However, it was also more
computationally demanding—exceeding even the MPC computation time—which ultimately
led to instability within the controller. We therefore adopted a hybrid approach: generating
the covariance matrices through the LKF, while the state predictions are computed using the
nonlinear equations. As a result, the predicted covariance matrices are only approximate, but
they are sufficiently accurate for our purposes.
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5 Controller

Having the predicted trajectory, we require a controller that can fully exploit this in-
formation. Ultimately, MPC is an ideal choice, as its ability to plan and adjust control inputs
based on future references sets it apart from other control algorithms.

MPC belongs to the field of optimal control. In optimal control, there are two primary
approaches to the problem, the indirect approach and the direct approach. The indirect ap-
proach seeks to derive a fixed, analytical controller. In contrast, the direct approach optimizes
the control actions directly, which requires an online optimization, one that is far more com-
putationally expensive but provides more versatility than the indirect approach. MPC stands
out as one of the most prominent examples of the direct approach.

5.1 Discrete-Time Optimal Control Problem on Finite Horizon

The basis of MPC lies in solving the discrete-time optimal control problem on finite
horizon. In this problem, a discrete-time system is controlled by a feedforward controller
on a finite horizon N . The goal of the controller is to obtain a sequence of control actions
u[0],u[1], . . . ,u[N ] that minimizes a given function J(·), often called the cost function. The
cost function serves as a way to qualify the performance of the controller based on the sequence
of the control actions and the states of the system, i.e.

J (u[t], . . . ,u[t+N ],x[t], . . . ,x[t+N ]) .

We denote the system state at time k by x[k] and the control input by u[k]. However, without
the knowledge of the dependencies of the inputs on the states, minimizing the cost function
would prove useless. These dependencies are supplied in the form of the system’s transition
model

x[k + 1] = f (x[k],u[k]) . (5.1)

Given the recurrent nature of (5.1), the initial state needs to be defined.

In order to further adhere to the real-world limitations, constraints on both the control
inputs

umin ≤ u[k] ≤ umax

and the states of the system
xmin ≤ x[k] ≤ xmax

are introduced. Combining everything, the general optimization problem can be written as

min
u[t],...,u[t+N−1],
x[t],...,x[t+N ]

J
(
u[t], . . . ,u[t+N − 1],x[t], . . . ,x[t+N ]

)
,

s.t. x[k + 1] = f(x[k],u[k]),

x[t] = x0,

umin ≤ u[k] ≤ umax,

xmin ≤ x[k] ≤ xmax, k = t, . . . , t+N − 1.

(5.2)

Notice that since the control input at time t + N influences a system state outside of the
horizon, it is not included in the optimization.
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5.2 MPC Control Loop

As mentioned above, the control sequence obtained by solving the optimization problem
(5.2) is of an open-loop (feedforward) nature. However, since real-life systems suffer from
many uncertainties such as measurement noise, environmental disturbances, etc., the open-
loop approach is not suitable.

In order to create a feedback controller, the problem (5.2) is solved at each iteration
with the initial state set to the current system state. The first control action from the sequence
is utilized, and the rest is discarded. Based on the number N , at every iteration, a great part
of the computed data is ultimately unused. The need to compute the optimization problem
at every iteration also means that MPC is a computationally expensive technique.

The length of the control sequence N is often called the prediction horizon. The predic-
tion horizon also specifies the amount of time into the future that the MPC predicts, which
can be computed as T = TsN , where Ts is the discretization period of the discrete model
used.

5.2.1 Control horizon

Control horizon Nc is a term similar to the prediction horizon. The prediction horizon
specifies the number of states to be optimized. The control horizon specifies the number of
control actions that are to be optimized, while setting all the subsequent control actions to
zero. In (5.2), the control horizon is set to be (and often it is the case) the same as the
prediction horizon, but we can rewrite (5.2) with the general control horizon with the added
modification

umin ≤ u[j] ≤ umax, j = 1, . . . , Nc − 1,

u[l] = 0 l = Nc, . . . , N − 1.

Introducing the control horizon lowers the number of optimization parameters, and
therefore improves the computation efficiency, which can be utilized to either decrease the
discretization period, thus improving the model accuracy, or increase the prediction horizon,
allowing us to compare states that are further into the future.

5.3 Types of MPC

MPC is a broad field, and therefore a lot of subclasses of MPC were introduced. MPC
types can be divided based either on the transition model or the formulation of the cost
function. If a nonlinear model is used, we call it Nonlinear Model Predictive Control (NMPC),
otherwise, using a linear model categorizes it under Linear Model Predictive Control (LMPC).

The choice of the cost function might be even more important, as improper definition
might lead the optimization to converge to local minima, rather than global. The cost func-
tion can be defined even nonlinearly, but most commonly, cost functions from the regions of
Linear Programming (LP) or Quadratic Programming (QP) are used. LP minimization can
be formulated as

min
x

c⊤x,

s.t. Ax ≥ b,

x ∈ Rn,
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where notation Ax ≥ b means that every i-th component of Ax is greater than or equal to
the i-th component of the vector b. QP assumes the form of

min
x

x⊤Ax+ b⊤x,

s.t. Cx ≤ d,

Ex = f ,

x ∈ Rn.

(5.3)

When LP or QP are combined with a linear model, the minimization problem of the
MPC iteration becomes convex1, meaning every local minimum is simultaneously a global
minimum, making the optimization much simpler. Moreover, optimizing a NMPC is much
more time consuming, and with a highly agile system as an UAV, the longer computing times
could introduce instability. Therefore, we chose to implement LMPC with a quadratic cost
function, often called Quadratic Programming Model Predictive Control (QP-MPC), which
we will cover in more detail.

5.4 Formulation of QP-MPC

Combining the use of the linear model and the quadratic cost function defined in (5.3),
we can formulate the cost function for the regulation task, i.e. setting all the states to be zero,
as follows:

min
u[t],...,u[t+N−1],
x[t],...,x[t+N ]

1

2
x⊤[t+N ]Sx[t+N ] +

1

2

t+N−1∑
k=t

(
x⊤[k]Qx[k] + u⊤[k]Ru[k]

)
,

s.t. x[k + 1] = Ax[k] +Bu[k],

x[t] = x0,

umin ≤ u[k] ≤ umax,

xmin ≤ x[k] ≤ xmax, k = t, . . . , t+N − 1.

(5.4)

Leaving the individual states x[t], ...,x[t+N ] in the optimization, we get what is called
the Simultaneous Formulation. We can also get rid of all the states but the initial one by
using the transfer function, since every state can be obtained using the state and input at the
previous iteration; this is often called the Sequential Formulation.

5.4.1 Simultaneous (Sparse) Formulation

Firstly, we stack the states and control inputs into two long vectors

x̄⊤ =
[
x⊤[t+ 1] x⊤[t+ 2) . . . x⊤[t+N ]

]
, (5.5)

ū⊤ =
[
u⊤[t] u⊤[t+ 1] . . . u⊤[t+N − 1]

]
. (5.6)

1The matrix A in QP needs to be positively semi-definite.

CTU in Prague Department of Cybernetics



20/46 5.4. FORMULATION OF QP-MPC

We can then rewrite the cost function (5.4) as

min
ū,x̄

1

2

[
x⊤[t+ 1] . . . x⊤[t+N ]

]

Q

. . .

Q
S


︸ ︷︷ ︸

Q̄

 x[t+ 1]
...

x[t+N ]

+

1

2

[
u⊤[t] . . . u⊤[t+N − 1]

]

R

. . .

R
R


︸ ︷︷ ︸

R̄

 u[t]
...

u[t+N − 1]

+

1

2
x⊤[t]Qx[t]︸ ︷︷ ︸
constant

(5.7)

subject to
x[t+ 1]
x[t+ 2]
x[t+ 3]

...
x[t+N ]

 =


0
A 0

A 0
. . .

A 0


︸ ︷︷ ︸

Ā


x[t+ 1]
x[t+ 2]
x[t+ 3]

...
x[t+N ]

+

B

B
B

. . .

B


︸ ︷︷ ︸

B̄


u[t]

u[t+ 1]
u[t+ 2]

...
u[t+N − 1]

+

A
0
0
...
0


︸ ︷︷ ︸
Ā0

x[t].

After stacking the vectors (5.5) and (5.6) and rewriting the terms, we arrive at the
following formulation

min
ū,x̄

1

2

[
x̄⊤ ū⊤] [Q̄

R̄

] [
x̄
ū

]
,

s.t. 0 =
[
(Ā− I) B̄

] [x̄
ū

]
+ Ā0x[t],

x[t] = x0,

ūmin ≤ ū ≤ ūmax,

x̄min ≤ x̄ ≤ x̄max,

(5.8)

where ūmin, ūmax, x̄min, x̄max are stacked vectors of the lower and upper limits of the controls
and states. Note that the last term from (5.7) has been omitted, since it is constant and
therefore will not have any effect on the minimization argument.

5.4.2 Sequential (Dense) Formulation

The Sequential Formulation explores the idea that every state can be determined by
the use of the transfer function and the state and control action in the previous iteration

x[k + 1] = Ax[k] +Bu[k].

Taking this idea further, we can derive the state at time [k+2] by substituting for x[k + 1]

x[k + 2] = Ax[k + 1] +Bu[k + 1] = A2x[k] +ABu[k] +Bu[k + 1]
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and, subsequently, we can utilize this formula for an arbitrary state at any given time, where
the value of the state is a function of the sequence of control inputs and the initial state x[k]

x[k + n] = Anx[k] +An−1Bu[k] +An−2Bu[k + 1] + · · ·+Bu[k + n− 1].

Rewriting this into matrix form notation, we get
x[t+ 1]
x[t+ 2]

...
x[t+N ]

 =


B
AB B
...

. . .

AN−1B AN−2B B


︸ ︷︷ ︸

Ĉ


u[t]

u[t+ 1]
...

u[t+N − 1]

+


A
A2

...
AN


︸ ︷︷ ︸

Â

.

Using the notation with the stacked vectors (5.5), (5.6), the whole transition constraint can
be written as

x̄ = Ĉū+ Âx[t].

Substituting into the cost function (5.8), we get a cost function that becomes independent of
x̄

J̃(ū,x[t]) =
1

2
(Ĉū+ Âx[t])⊤Q̄(Ĉū+ Âx[t]) +

1

2
ū⊤R̄ū+

1

2
x⊤[t]Qx[t]

=
1

2
ū⊤Ĉ⊤Q̄Ĉū+ x⊤[t]Â⊤Q̄Ĉū+

1

2
x⊤[t]Â⊤Q̄Âx[t] +

1

2
ū⊤R̄ū+

1

2
x⊤[t]Qx[t]

=
1

2
ū⊤ (Ĉ⊤Q̄Ĉ+ R̄)︸ ︷︷ ︸

H

ū+ x⊤[t] Â⊤Q̄Ĉ︸ ︷︷ ︸
F⊤

ū+
1

2
x⊤[t](Â⊤Q̄Â+Q)x[t]︸ ︷︷ ︸

constant

.

The last term can once again be omitted since the optimizer will not be affected by it. Using
all of the above, the optimization problem takes the form

min
ū

1

2
ū⊤Hū+ x⊤[t]F⊤ū,

s.t. x[t] = x0,

ūmin ≤ u[k] ≤ ūmax,

x̄min ≤ Ĉū+ Âx[t] ≤ x̄max.

Most often than not, solving the MPC optimization problem requires an iterative solver.
However, omitting the constraints on states and control actions, we can arrive at a closed-form
solution, by taking the gradient of the cost function and setting it to zero

∇ūJ̃(ū,x[t]) = Hū+ Fx[t] = 0,

we can find the local extreme of the cost function. Since the problem is convex, setting the
gradient to zero effectively finds the global minimum, and upon solving, the solution can be
written as

ū = −H−1Fx[t].

Since MPC utilizes only the first control action from the sequence, the solution can be adjusted
to return the desired control action directly

u[t] = −
[
I 0 . . . 0

]
H−1F︸ ︷︷ ︸

K

x[t].

Combining the matrices, we can notice that the immediate control action is obtained as
u[t] = Kx[t], therefore, QP-MPC without constraint acts as a special case of state feedback.
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5.4.3 Partial Condensing

A question arises as to which formulation should be used. The dense approach might
seem like the obvious choice due to the elimination of variables, which should make it more
efficient. This is especially true for small control horizons. However, as the prediction horizon
grows, the matrices can become nearly singular. Sparse problems, on the other hand, produce
near-diagonal matrices with most elements being zero. Solvers can exploit this sparsity to
reduce both the memory footprint and the computation time of the optimization.

Partial condensing [33] lies between these two approaches. The basic idea is to divide
the prediction horizon into M blocks, eliminating the state variables within each one using
condensation (formulating the problem as dense). This results in a matrix composed of diag-
onally connected dense sub-matrices corresponding to the individual blocks. By adjusting the
parameter M , we can gradually pass from the sparse to the dense formulation, without the
need to strictly choose one over the other.

5.4.4 Reference Tracking

So far, we have focused on solving the regulation task, which involves bringing all the
states to zero. To reformulate the problem for reference tracking, the objective function needs
to be modified to minimize the tracking error e[t] instead of the states. The tracking error
is defined as the difference between the reference state xr[t] and the actual state2 x[t], i.e.
e[t] = xr[t]− x[t]. Substituting the tracking error into the cost function (5.4) yields

J =
1

2

t+N−1∑
k=t

(
(xr[k]− x[k])⊤Q(xr[k]− x[k]) + u⊤[k]Ru[k]

)
+

1

2
(xr[t+N ]− x[t+N ])⊤S(xr[t+N ]− x[t+N ])

=
t+N−1∑
k=t

1

2
x⊤
r [k]Qxr[k]︸ ︷︷ ︸
constant

−x⊤[k]Qxr[k] +
1

2
x⊤[k]Qx[k] + u⊤[k]Ru[k]


+

1

2
x⊤
r [t+N ]Sxr[t+N ]︸ ︷︷ ︸

constant

−x⊤[t+N ]Sxr[t+N ] +
1

2
x⊤[t+N ]Sx[t+N ].

(5.9)

Note that the constant terms can once again be omitted from the optimization.

2The tracking error can also be defined as the difference between a reference output and the system’s current
output, with the use of the state to output matrix C.
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6 Implementation

Building upon Chapters 3, 4 and 5, this chapter describes the practical implementation
of the entire control pipeline. All algorithms were written in C++ within the Robot Operating
System (ROS) framework, and inside a Multi-robot Systems Group (MRS) workspace. The
algorithm is intended to run on the UAV’s onboard computer, such as the Intel NUC. Devel-
opment, debugging, and tuning took place in the MRS system simulator [34], the backbone
of which is the physics simulator Gazebo [35]. This allowed for near-real-life behavior of the
systems, making the later deployment in the real world much easier.

Since the measurement approaches for the leader’s position and attitude are unavailable,
we obtain these measurements through the leader’s onboard estimator and transmit them via
Wi-Fi to the follower UAV. To simulate measurement noise, we introduce it artificially during
each iteration of the controller.

6.1 Kalman Filter

The LKF was implemented as a standalone class in the workspace, with both the pre-
diction and correction steps being callable methods. Matrix operations are handled using the
Eigen library, ensuring efficient computation and ease of use. The only parameter required
by the LKF model is the leader’s mass, which is assumed to be known. In simulations, the
equal mass to the follower’s was used, while in real-world experiments, the leader UAV was
physically weighed.

The prediction method accepts the time between consecutive controller iterations and
uses it to discretize the model (3.4) via the Forward Euler method, as described in section 2.8.
This dynamic discretization is crucial, as the controller’s iteration period is not guaranteed to
be constant, despite being designed to run at 100Hz. The method then performs the prediction
step (3.1), storing the resulting state and covariance estimates internally.

The correction method takes the current noisy measurements of the leader’s position
and attitude, applies the correction step (3.2) and updates the internally saved estimates
accordingly. We chose to leave the yaw (and the corresponding angular velocity) in the LKF
model for completeness, and supply zero at all times as the yaw measurement.

To evaluate the effects of the leader’s attitude measurements on the overall performance,
a second variant of the LKF was implemented, which utilizes only the measurements of the po-
sition. The implementation remains largely identical, with the only difference being a cropped
system output matrix (3.5)1.

6.1.1 Acceleration Bias

In order to further adhere to real-world behavior, we introduce two additional states: an
acceleration bias in the x and y direction. These states are designed to correct the acceleration
estimation of the model, which could be caused by sensor bias, real-world disturbances, or an
inaccurate model. We therefore adjust the velocity differential equations from (3.3) as[

v̇x
v̇y

]
=

[
T
m (cosψ sin θ cosϕ+ sinψ sinϕ)− bx
T
m (sinψ sin θ cosϕ− cosψ sinϕ)− by

]
,

1The rows for the attitude outputs are omitted from the matrix.
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where bx, by are the acceleration biases for the x and y axis, respectively. The differential
equations for the offset states are unknown; we therefore once again model them as constant,
setting their differential equations to zero. The linear system state matrix (3.4) is updated
accordingly.

6.1.2 Tuning the LKF

Tuning the LKF parameters consists of setting the diagonal values of the QKF and
RKF matrices. The filter’s behavior is determined by these values. The measurement noise
covariance matrix RKF reflects the confidence in the sensor measurements, while the process
noise covariance matrix QKF reflects the confidence in the model dynamics. Setting the RKF

values too low causes the filter to overly trust the noisy measurements, while setting them
too high makes the filter ignore the measurements entirely. If the QKF values are too low, the
filter puts too much confidence in the dynamic model, reacting too slowly to changes. Setting
the values too high removes the confidence in the model, resulting in an overly responsive
performance and noisy estimations. The filter’s behavior inherently depends on the relative
values of both matrices rather than the absolute ones.

Since the RKF matrix ideally reflects the actual sensor noise, its values were derived
from real sensor characteristics. For the position measurements, we assume the use of Real-
Time Kinematic Global Positioning System (RTK-GPS), allowing for centimeter accuracy.
Assuming the accuracy of 5 cm, this gives the standard deviation of position σP = 0.05m,
and thus a covariance σ2P = 0.0025m.

For attitude, a covariance matrix

Σẑ =

 0.0277 −0.00279 −0.0041
−0.00279 0.00937 0.00002
−0.0041 0.00002 0.000379


was obtained from a ML-based method, which estimates the orientation of the z-axis of the

Body frame ẑ =
[
xz yz zz

]⊤
. As the heading (yaw angle) is assumed to be always zero,

the z-axis orientation is enough to obtain the roll and pitch angles. We can transform the
covariance matrix of the z-axis estimation into a covariance matrix of the roll and pitch
angles by using a linear transformation. Using the approximation α ≈ sinα for small angles,
the transformation from the z-axis to the angles can be approximated as[

ϕ
θ

]
≈

[
0 1 0
1 0 0

]
︸ ︷︷ ︸

T

xzyz
zz

 .
The covariance matrix can then be obtained by using the formula ΣA = TΣẑT

⊤, where
T is a linear transformation matrix. Substituting into the equation yields

ΣA =

[
0.0094 −0.00279
−0.00279 0.0278

]
.

Taking a larger covariance and accounting for the linearization error, we set the covariance
for the attitude as σ2A = 0.03 rad2.

QKF was tuned empirically through trial and error in the simulation, where the noise
for both attitude and position was added artificially in each iteration of the controller. Table
6.1 shows the values of the final QKF and RKF matrices.
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QLKF

x y z vx vy vz ϕ θ ψ ωϕ ωθ ωψ T ox oy

diag([ e−3 6e−3 e−3 0 8e−4 0.1 e−4 ])

RLKF diag([ 0.0025 0.0025 0.0025 0.03 0.03 0.03 ])
x y z ϕ θ ψ

Table 6.1: The tuned process noise covariance and measurement noise covariance matrices.
The empty places in the QLKF denote the same number as the previous one in order to save
space.

6.2 Trajectory Prediction

The trajectory prediction is implemented as a method inside the LKF class and follows
the pseudo-algorithm described in Algorithm 1. The linear predictions are replaced with the
nonlinear ones with the use of equations (3.3). The prediction’s starting point is the current
state estimation obtained from the LKF. The predictions are computed twice: once with
the estimation from the LKF with attitude measurements and once using only the position-
based estimate2. The number of predicted steps and the sampling period match the prediction
horizon N and the discretization period of the MPC, enabling seamless use of the predicted
trajectory as the reference.

6.3 MPC

The implementation of the MPC controller follows the concept and structure described
in chapter 5. The controller has been implemented with the use of the Acados [36] framework.
Acados is an open-source framework that unifies the interface for state-of-the-art solvers for
the MPC optimization problem, like High-Precision Interior Point Method (HPIPM), which
was used in this thesis.

6.3.1 Problem Formulation

The HPIPM solver formulates the cost function in the following way:

min
x̄,ū

1

2

N∑
n=0

unxn
1

⊤ Rn Sn rn
Sn Qn qn
rn qn 0

unxn
1

 .
Multiplying the terms and comparing them to the derived reference cost function in (5.9), we
arrive at the following substitutions

rn = 0,

Sn = 0,

qn = −Qnx
r
n,

where xrn is the reference state. We can therefore see that setting the reference is done by
setting the linear term qn. TheRn andQn represent the quadratic costs in relation to the input
and state, respectively. The subscript n tells us that these matrices can be time-dependent
and changed for every step of the MPC.

2This is done in order to compare the two approaches.
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6.3.2 Incremental Model

In order to have more precise control over the behavior of the control inputs outputted
by the MPC, we transform our model into an incremental (delta-u) one. Incremental models
make the control actions part of the states, concatenating the input vector to the state vector.
The input vector is replaced by a vector of input increments. We can transform the LTI
discretized model to an incremental one as follows:[

x[k + 1]
u[k + 1]

]
=

[
A B
0 I

]
︸ ︷︷ ︸

AINC

[
x[k]
u[k]

]
+

[
0
I

]
︸︷︷︸
BINC

∆u[k].

Making this change, the states of our model become

xINC =
[
x y z vx vy vz ϕ θ ψ T ϕR θR TR

]
,

while the inputs take the form of

uINC =
[
∆ϕR ∆θR ∆TR

]
.

Changing the model to incremental allows us to regulate the input increments through the
Rn matrix, thus making the change in the inputs more conservative and therefore the control
actions much smoother.

6.3.3 Setting the Reference

After obtaining the predicted states, we can set the reference for every timestep n with
the use of the linear term qn = −Qxrn. However, using the same cost matrix Q for every step
would mean that we put the same emphasis on every reference. This is a flawed approach, as
the positions at the end of the predicted trajectory are less likely to be achieved by the leader
UAV, while the positions at the start of the trajectory are much more probable. This is due
to the disturbances in the dynamics or the inaccurate assumption that the angular velocities
and thrust in the LKF model stay constant.

We therefore use the covariance matrix to scale the cost matrixQ, resulting in a different
cost matrix Qn for every step n. The bigger the values in the covariance matrix, the less
confidence we have in the corresponding reference. By calculating the pseudo-inverse of the
covariance matrix, we receive a near-diagonal matrix. The values on the diagonals can be used
to scale the corresponding values in the Q matrix. By utilizing this approach, we effectively
make the references with bigger covariance less influential.

Through experiments, we have found that the scaling by the covariance is not enough,
as the MPC still puts too much trust in the references at the end of the prediction, making
the follower UAV overtake the leader on linear trajectories. To compensate, we scaled the
individual cost matrices Qn at every timestep n based on the elapsed time as

Qn ← e−αnTsQn,

where Ts is the discretization period of the predictions. The parameter α was iteratively chosen
as α = 2.

Outside of the reference, the starting state x0 of the UAV also needs to be initialized.
We set the state as the current state estimation, provided by an onboard estimator, together
with the last control action, as we are using an incremental model.
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6.3.4 Constraints

We want to introduce constraints on the states for 2 reasons; firstly, deviating far apart
from the equilibrium point makes the linear approximations less accurate. Secondly, we want
to avoid dangerous situations, which could result in a loss of control, or damage to the aircraft,
f. e. turning the UAV upside down. For these reasons, we set constraints on the roll ϕ and
pitch θ angles, and vertical velocity of the aircraft. The specific values are shown in Table 6.2.
The rest of the states we leave unconstrained, as there is no reason to do otherwise.

value min max

ϕ, θ −0.5 rad 0.5 rad

vx, vy −10ms−1 10ms−1

Table 6.2: Introduced constraints on the UAV states.

6.3.5 Tuning the MPC

The MPC controller can be tuned to achieve the desired behavior by changing numerous
parameters. These parameters include

(i) The general solver parameters: The prediction/control horizon, the sampling period,
etc.

(ii) The cost function: Setting the diagonal values in Qn and Rn matrices.

We set the prediction horizon N as big as the hardware allows us to, i. e. when the time
taken to solve the optimization does not pose a problem. Based on how far into the future we
want to predict, the sampling period Ts is chosen and can be calculated as tmax = NTs. The
whole set of parameters is shown in Table 6.3.

N NC Ts Formulation M

Value: 50 50 0.05 Partial condensing 10

Table 6.3: Overview of the tuned MPC parameters, N is the prediction horizon, NC is the
control horizon, Ts is the sampling period, and M is the level of condensation.

The cost function was tuned using the simulation environment in order to satisfy the
following requirements:

(i) Fast and accurate position tracking;
(ii) Smooth control input change, i. e. no rapid changes back and forth;
(iii) No overly aggressive inputs.

Table 6.4 shows the overview of the cost matrices for the states and control inputs. Note that
the final matrix Qn for timestep n is calculated as the scaled version of the matrix Q, as
described in subsection 6.3.3.
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Q
x y z vx vy vz ϕ θ ψ T ϕR θR TR

diag([ 100 100 500 5 5 5 0 0 0 0 2000 2000 10 ])

R diag([ 100000 100000 1000 ])
∆ϕR ∆ϕR ∆ϕR

Table 6.4: The tuned MPC cost matrices Q and R.
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7 Experiments

This chapter presents the results of the conducted experiments, evaluating the perfor-
mance of all the individual components of the algorithm, as well as the overall effectiveness
of the pipeline. Firstly, the simulation results are presented, containing a thorough evaluation
of the algorithm’s efficiency and the effect of the attitude measurements, plus the impact of
different noise levels and refresh rates of the measurements. In the end, we present the results
of real-life experiments, showing the algorithm’s usability outside of the simulations.

In all simulation experiments, the refresh rate of the controller was set to 50Hz. Nor-
mally, the established rate is 100Hz, but due to hardware limitations, we had to slow down
the simulation by a factor of five in order to achieve even the 50Hz controller rate. Since the
time required for the experiments was already increased fivefold, we settled on 50Hz, as it
provided satisfactory results. Unless stated otherwise, the following parameters were used for
the experiments:

attitude measurement refresh rate ... 50Hz,
attitude noise covariance σ2A ... 0.03 rad2,
position measurement refresh rate ... 50Hz,
position noise covariance σ2A ... 0.0025m2.

For the LKF and MPC, the parameters described in chapter 6 were utilized.

The experiments were conducted using a line trajectory for the leader UAV. The line
trajectory consists of the leader moving 10 meters in the y-axis direction and back to its
starting point, repeating. The trajectory was flown at a constant height of 5 meters. The speed
of the trajectory was given by a time parameter dt, which specified the time of travel between
the individual setpoints. For example, the line trajectory is given by setpoints [0, 0, 5](x,y,z)
and [0, 10, 5], and setting the dt = 3 s means that the leader has 3 seconds to move from one
point to the other. Notably, when the dt is set too low, the leader does not have enough time
to cover the specified distance, meaning the turn on the line begins earlier. The experiments
were made for 3 separate leader speeds given by dt = 2/3/4 s. This allows us to compare
the performance of the controllers from slower up to very agile trajectories. It must be noted
that setting dt = 2 s does not mean that the leader is necessarily faster than with dt = 3 s.
Since there is less time, the leader cannot achieve as high a velocity; however, the change in
direction will be much faster during dt = 2 s.

The line trajectory was chosen specifically for several reasons. First, since the value in
the x-axis remains constant, we focus solely on the performance along the y-axis. We assume
that the controller behaves similarly in both the x and y axes, which was confirmed during the
experiments. More importantly, this setup simplifies the interpretation of the data collected
during the experiments. For the same reasons, we do not evaluate the performance along the
z-axis, as the attitude measurements have a negligible effect on its control. Lastly, the line
trajectory features a highly agile movement—a complete change in the direction of flight—
making it ideal for our evaluation.

7.1 LKF

In this section, we evaluate and compare the performance of the LKF with and with-
out attitude measurements—hereafter referred to as LKFA(utilizes attitude measurements)
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and LKFP (utilizes only position measurements), respectively. The behavior of both filters
is compared to the ground truth obtained from the simulation. The measurements of the
leader’s position and attitude were obtained from the leader’s onboard estimator. Noise with
the covariance specified in subsection 6.1.2 was artificially added to the measurements in each
iteration to simulate the real-world behavior of the sensor readings.

Starting with the slowest motion for dt = 4 s in Figure 7.1, the difference between the
two filters is relatively small. We observe that both filters perform similarly in estimating the
position and velocity. The LKFA estimates both the angle and angular velocity slightly better,
and therefore provides a better estimation of acceleration. Interestingly, the filter without the
attitude measurements does not make use of the acceleration bias at all, which remains nearly
zero at all times.
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Figure 7.1: Comparison of LKF with and without attitude measurements for dt = 4 s.

Similar results can be concluded from the experiment with dt = 3 s, shown in Figure 7.2.
The performance in estimating position and velocity stays relatively similar. However, as the
motion becomes faster and the direction changes more abruptly, the difference in accelera-
tion estimation becomes more significant. While LKFA provides tight tracking of acceleration
thanks to the attitude measurements, the estimates of acceleration from LKFP become in-
creasingly delayed and less accurate.

At dt = 2 s shown in Figure 7.3, LKFP begins to lose accuracy even in the velocity esti-
mates. The acceleration estimates show a consistent delay, approximately 0.3 s. This highlights
the influence of the attitude measurements on the acceleration estimation, since acceleration is
directly (and almost linearly) linked to the rotation, as illustrated in the roll and acceleration
plots.
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Figure 7.2: Comparison of LKF with and without attitude measurements for dt = 3 s.
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Figure 7.3: Comparison of LKF with and without attitude measurements for dt = 2 s.
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7.2 Trajectory Predictor

We present the results of trajectory prediction solely for the case dt = 2 s, as the
prediction performance relies only on the state estimates by the Kalman Filters, which were
thoroughly evaluated in the previous section. Therefore, we focus only on the most agile
trajectory tested.

In Figure 7.4, the MSE of the position prediction is depicted, with the leader’s velocity
and acceleration plotted for reference. The MSE for one prediction instance was calculated
as follows: for every predicted state, we computed the error as the absolute difference from
the predicted leader’s y-position and the actual leader’s y-position at the time given by the
prediction. Finally, the MSE was computed from the collected error values.

As illustrated, the MSE of the predictions based on the LKFA filter (which utilizes
the attitude measurements) is approximately four times lower at the peaks compared to those
based on LKFP . An intriguing observation is that the error peaks occur at different times. For
LKFA, the largest prediction error arises at a time when the acceleration begins to change—
specifically, when the leader UAV begins braking to reverse direction. In contrast, the largest
deviation in LKFP ’s prediction occurs when the velocity reaches its maximum1. Since the
LKFP estimates the acceleration poorly, it does not anticipate the braking behavior of the
leader; therefore, the error gets so high.
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Figure 7.4: MSE of position predictions of both Kalman Filters for dt = 2 s. The top graph
shows the leader’s velocity and acceleration for context.

Figure 7.5 presents a single prediction instance, demonstrating the exact behavior de-
scribed above. The prediction was made during a braking maneuver. While the prediction
made by LKFA closely tracks the leader’s trajectory, LKFP ’s prediction deviates significantly
due to the inaccurate estimate of the acceleration.

7.3 Controller

In the following section, the performance of the entire pipeline is evaluated. We begin
by comparing the controller that utilizes the attitude measurements (denoted as MPCA) to
the one that uses only position measurements (denoted as MPCP ). Following this, we analyze

1The term maximum is used loosely and refers to the peaks in both the positive and negative values.
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Figure 7.5: A single prediction instance of the Kalman Filters, showing the leader’s position
in the y-axis.

the impact of measurement noise and the update rate of the attitude measurements on the
overall performance.

Although the experiments were conducted in simulation, the reference trajectory could
not be reproduced exactly across all runs. The trajectories therefore occasionally differ by up
to ≈ 5 cm along each axis. These discrepancies are disregarded in favor of maintaining clear
and concise plots.

7.3.1 Effect of Attitude Measurements

In Figure 7.6, we show the behavior of both controllers for the slowest case given by
dt = 4 s. Notably, the difference between the performances is not significant, with the MPCP
exhibiting only a slight delay in tracking2. The leader and follower UAVs show similar velocity,
acceleration, and roll profiles under both controllers.
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Figure 7.6: Comparison of both controllers for dt = 4 s.

As the trajectory speed increases, shown in Figure 7.7, the position tracking of MPCA
proves much more accurate, with the MPCP even sometimes overtaking the leader UAV, as
it reacts to the braking behavior much later. In the case of dt = 2 s illustrated in Figure 7.8,

2The delay cannot be seen in the plot, but is apparent from the statistical results.
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MPCP ’s tracking error increases considerably due to the leader’s agile motion. Moreover, the
MPCP compensates for its flawed prediction during the turns with more aggressive maneuvers,
which are visible in the velocity, acceleration, and roll plots. In fact, the roll reaches the
saturation imposed by the MPC constraints. In contrast, MPCA not only provides accurate
position tracking, but also manages to keep similar velocity and acceleration as the leader
throughout the trajectory.
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Figure 7.7: The comparison of both controllers for dt = 3 s.
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Figure 7.8: The comparison of both controllers for dt = 2 s.

The statistical tracking errors of both tracking controllers are summarized in Table 7.1.
As the trajectory speed increases, the performance of both controllers deteriorates. However,
the MPCP ’s decline in performance during more agile movements is much more significant; its
tracking error worsens by approximately a factor of four when the dt is halved, compared to
a factor of around two for MPCA. Furthermore, MPCA consistently achieves better tracking
across all speeds tested, achieving approximately 80% improvement in the mean tracking error
during the highest trajectory speed. The improvement is less significant at slower trajectory
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speeds, where the movements of the leader UAV are less abrupt, but still present, achieving
an improvement of almost 40% during dt = 4 s. The exact overall improvement is shown in
Table 7.2.

MPCA MPCP
dt[s] mean(ey)[m] std(ey)[m] ∆max(ey)[m] mean(ey)[m] std(ey)[m] ∆max(ey)[m]

2 0.142 0.097 0.319 0.735 0.392 1.230

3 0.106 0.073 0.362 0.458 0.243 0.859

4 0.080 0.056 0.256 0.128 0.076 0.314

Table 7.1: Statistical results of the tracking performance of both controllers at different tra-
jectory speeds. From left to right: the mean, standard deviation and maximum of the position
error along the y-axis. The position error is calculated as the absolute difference of the leader’s
and follower’s position ey = |yL − yF |.

dt[s] mean(ey) Improvement[%] std(ey) Improvement[%] ∆max(ey) Improvement[%]

2 80.68 75.26 74.07

3 76.86 69.96 57.86

4 37.50 26.32 18.47

Table 7.2: Improvement of MPCA mean, standard deviation and maximum of the position
error along the y-axis compared to MPCP .

7.3.2 Noise Impact

To evaluate the influence of the attitude measurement noise on the performance of the
controllers, we chose 4 different noise levels shown in Table 7.3. Throughout the following
tests, the frequency of the attitude measurements was fixed at 50Hz. The UAV flew the same
trajectory under each noise level, with noise introduced artificially at each controller iteration.
The parameters of both the LKF and MPC remained constant at the previously described
values.

σA[rad] σA[deg] σ2A[rad
2]

1 0.0 0.0 0.0

2 0.1 5.73 0.01

3 0.173 9.91 0.03

4 0.316 18.16 0.1

Table 7.3: Tested attitude noise levels. From left to right: the standard deviation in radians,
the standard deviation in degrees, and the covariance in radians squared.

We show the result just for the trajectory speed dt = 2 s. In Figure 7.9, the comparison
of the Kalman Filter estimates for the different noise levels is shown. Across all tested covari-
ances, the estimates of the LKFA track the ground truth values much more accurately than
LKFP , effectively enabling a more reliable prediction for the controller. The comparison of
the controller performance is depicted in Figure 7.10. A statistical summary of the tracking
error for the different noise levels for all trajectory speeds is presented in Table 7.4.
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Notably, even under the highest noise tested, the performance of MPCA remains signifi-
cantly better than that of MPCP during agile trajectories. This result underscores the benefit
of including the attitude measurements, as even with heavy noise, the use of the noisy attitude
measurements outperforms the position-only based approach. During the slowest tested tra-
jectory speed, MPCA with the noise level given by σ2A = 0.1 rad2 achieved worse performance
than MPCP . In this case, the benefit of attitude knowledge was insufficient to compensate for
the impact of the large noise level, degrading the controller’s performance.
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Figure 7.9: Comparison of LKFA estimates across different noise covariances for trajectory
speed dt = 2 s. The covariance are in radians squared. The estimates of LKFP are provided
for reference.

mean(ey)[m]

dt[s] σ2A = 0.0 σ2A = 0.01 σ2A = 0.03 σ2A = 0.1 MPCP
2 0.129 0.119 0.142 0.239 0.735

3 0.080 0.068 0.106 0.197 0.458

4 0.075 0.063 0.080 0.132 0.128

Table 7.4: Mean absolute tracking error in the y-axis across noise levels and speeds. The data
for LKFP are also provided for reference purposes. The covariances are in radians squared.

7.3.3 Refresh Rate Impact

The influence of different measurement refresh rates was evaluated for four different
values: 50Hz, 20Hz, 10Hz, and 1Hz. During the experiments, we fixed the attitude noise
covariance at σ2A = 0.03 rad2. The parameters in LKF and MPC remained fixed throughout
all the experiments.
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Figure 7.10: Performance of MPCA controller under varying attitude noise levels, compared
with MPCP , for trajectory speed dt = 2 s. The covariances are in radians squared.

We show the impact on the estimates of the LKFA for dt = 2 s in Figure 7.11. Notably,
the LKFA maintains an accurate estimation performance down to a refresh rate of 10Hz.
However, at the rate of 1Hz, the estimates begin to diverge significantly, often performing
worse than the LKFP . This is especially evident on the acceleration plot, where the delay of
the estimate is far greater. Furthermore, the times when the measurements are received are
visibly seen in the acceleration and roll plots, which display a ”step-like” behavior at each
measurement update.

The quality of the estimates becomes evident in the controller performance, as shown in
Figure 7.12. The performance of MPCA greatly excels that of MPCP , with the refresh rate as
low as 10Hz. However, as was the case in the LKF estimates, at 1Hz, the MPCA’s performance
deteriorates, resulting in a significantly larger tracking error and tracking delay. Additionally,
the performance of the controller becomes highly dependent on the specific timing of the
updates, as can be seen in the error graph, where the error for 1Hz is first lower than that of
the MPCP , but worsens over time.

The statistical data for all the refresh rates, and all tested trajectory speeds, are provided
in Table 7.5. The results show that at extremely low refresh rates, the attitude measurements
no longer provide an advantage (since our trajectory is periodic with a whole-second period,
the impact of the low refresh rate is less severe; however, for a different trajectory, it would
lead to significantly worse performance). Nevertheless, an update rate of 10Hz already brings
substantial improvements, performing comparably to the highest tested rate of 50Hz.

mean(ey)[m]

dt[s] 50Hz 20Hz 10Hz 1Hz MPCP
2 0.142 0.136 0.167 0.582 0.735

3 0.106 0.118 0.123 0.556 0.458

4 0.080 0.071 0.117 0.258 0.128

Table 7.5: Comparison of the mean absolute error in position along the y-axis for the different
measurement update rates.
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Figure 7.11: Comparison of LKFA estimates for different measurement refresh rates, with
estimates of LKFP provided for reference.
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Figure 7.12: The influence of the measurement refresh rate on the performance of MPCA
controller.
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7.4 Real-life Experiments

To demonstrate the functionality of the control algorithm beyond simulations, tests on
real hardware were conducted. The algorithm was tested on the same trajectory as used in
the simulation experiments, with trajectory speed given by dt = 3 s.

The controller ran on the Intel NUC onboard computer at a stable refresh rate of 100Hz.
The states of the follower UAV were obtained from the onboard estimator. For the vertical
position (and thus vertical velocity and acceleration), the RTK-GPS was used, while for the
horizontal, we utilized GPSGarmin3. The leader measurements were also obtained through
the estimator, and sent as a ROS-topic to the follower UAV through Wi-Fi. Since the Wi-Fi’s
speed and response time varied largely, the data sometimes came with a delay or failed to
arrive altogether. To handle this, we introduced a timeout mechanism on the measurement
data. Every message containing the leader UAV’s position and rotation measurements older
than 0.5 s was discarded. If such a message arrived, the last obtained measurements were
utilized in the control loop.

The parameters of the LKF and MPC were equal to the ones described in chapter 6,
with the exception of three MPC cost variables, which were retuned after the real-world
experiment had ended in order to improve the controller performance. To compare the real-
life results with simulations, we ran the same experiments with identical parameters in the
simulation environment. The MPC cost parameters used during the experiments are provided
in Table 7.6.

Q
x y z vx vy vz ϕ θ ψ T ϕR θR TR

diag([ 10 10 500 5 5 5 0 0 0 0 2000 2000 10 ])

R diag([ 100000 100000 10000 ])
∆ϕR ∆ϕR ∆ϕR

Table 7.6: The MPC cost matrices used during the real-life experiments. Red highlights the
values that differ from the parameters defined in Table 6.4.

7.4.1 Results

The results, alongside their simulation counterparts, are depicted in Figure 7.13. The
behavior of the real-world drones is displayed in the left column, while the simulation data
are shown in the right column. Around time t ≈ 25 s, the leader controller during the real-life
experiment briefly experienced faulty behavior, resulting in a different trajectory. The MPCA’s
superior tracking ability is visibly seen, tracking tightly the position, as well as velocity and
acceleration. By contrast, MPCP achieves an overshoot of ≈ 1m, compared to ≈ 0.4m with
MPCA. The velocity and acceleration tracking of MPCP are also worse, with the roll angle
achieving saturation due to the unforeseen braking maneuvers.

Comparing both the real-world and simulated results reveals a strong correlation. Both
controllers behaved similarly at all times (excluding the disturbance, which we were unable
to model), and achieved almost the same overshoots in both scenarios. This confirms the sim-
ulation’s reliability as a representation of the system dynamics and validates the algorithm’s

3The use of RTK-GPS for the horizontal estimation came with noticeable drift in the position.
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usability in real-world conditions, successfully handling delayed measurements and sometimes
even complete loss of measurement data.
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Figure 7.13: Results of the real-world experiment. In the left column, the data from the
real-world experiment, in the right column, the data with the identical parameters from a
simulation experiment. The use of MPCA and MPCP controllers is denoted by pink and
green background, respectively.

To visualize the results more clearly, we show a motion trail composite of both UAVs
utilizing both controllers in Figure 7.14. The motion shown contains one instance of the line
trajectory, the same trajectory contained in the graphs shown above. The difference between
the controllers is apparent, as MPCA achieves a much smaller overshoot in the braking part
at the end of the line.

7.5 Summary

This section provided a comprehensive evaluation of the impact of attitude measure-
ments on the estimation of the leader states, prediction of the short-term trajectory, and the
overall performance of the control algorithm. The improved performance of the controller
incorporating attitude measurements was demonstrated, particularly dominant during more
agile leader movements given by faster trajectory speeds. Furthermore, the effect of the atti-
tude measurement noise and refresh rate was analyzed. The results confirmed that attitude
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(a) MPCA. (b) MPCP .

Figure 7.14: Motion trail composite of the line trajectory for MPCA controller in (a), and
MPCB in (b). In both the images, the leader is located at the bottom, while the follower is at
the top. The leader’s left-most shown position always corresponds to the end of the braking
motion, where the UAV has zero velocity. The arrow indicates the direction of flight.

measurements significantly improve performance, with a mean position error improvement of
up to 80% during the highest tested trajectory speed. Even with high measurement noise and
refresh rates as low as 10Hz, the attitude measurements provided noticeable improvement.

Finally, we presented data from real-world experiments, illustrating the algorithm’s
effectiveness outside simulations. The data were comparable with the simulation experiments,
which proved that the simulation is a valid reference for the performance of the control
algorithm.
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8 Conclusion

This thesis presented the design and implementation of a control algorithm for a one-
to-one leader-follower UAV formation that incorporates the leader’s attitude measurements
to improve the tracking performance. Firstly, the UAV dynamics were studied, from which
a linear mathematical model was derived as a foundation for the algorithm’s components.
A LKF was developed to estimate the leader’s full state from noisy position and attitude
measurements. The filter was extended to predict the future short-term trajectory of the
leader UAV. To track the predicted trajectory, a QP-MPC controller was implemented. The
whole pipeline was successfully implemented in C++ as a MRS module.

Comprehensive experiments, conducted both in simulation and in the real world, demon-
strated that incorporating the attitude measurements significantly enhances the estimation
of the leader’s states. This led to improved short-term trajectory prediction and the overall
tracking capabilities of the controller. This improvement was especially evident during agile
trajectories, which involved sudden directional changes. The effect of different noise levels and
the update rate of the measurements was also evaluated, highlighting the system’s robustness,
as it achieved a great improvement in tracking even with noisy data and low update rates.

8.1 Future Work

Future development will focus on extending the algorithm to handle more aggressive
and faster flight movements. This would require retuning the MPC (and perhaps the LKF),
as the current parameters leave room for further improvements. Possibly, highly agile motion
may necessitate moving beyond the linear approximations, potentially requiring a nonlinear
version of the Kalman Filter (such as UKF) and NMPC, as the deviation from the equilibrium
point would be far greater. However, this would require more computing power for the online
optimization. Incorporating real measurements of both the position and attitude, without
requiring communication between the leader and the follower, also constitutes an interesting
extension of this work.
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A Appendix A - Digital Content

In Table A.1, the names and descriptions of the included digital files are listed.

Name Description

thesis.pdf Bachelor’s thesis in pdf format
leader follower controller.zip C++ source codes for the controller
experiment.mp4 down-scaled video of the real-life experiment
experiment link.txt YouTube link for the experiment video in full resolution

Table A.1: Digital Content.
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