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Abstract

This thesis presents a new, fully-decentralized swarming algorithm for Unmanned
Aerial Vehicles (UAVs) that addresses a critical limitation of classical boids flock-
ing models: dependence on relative velocity measurements, which are challenging to
measure reliably in decentralized systems. By integrating higher-order derivatives -
specifically, relative acceleration and orientation of neighbouring agents - the pro-
posed method eliminates the need for noisy velocity measurements. The algorithm
and its resilience against severe sensor noise is rigorously evaluated in simulations.
Further, real-world outdoor flight experiments are conducted to validate real-world
performance. Results confirm that the algorithm maintains safe separation, cohe-
sion and alignment even under severe sensor noise, outperforming traditional boids
implementations in practical scenarios.

Keywords Unmanned Aerial Vehicles, UAV, Drones, Swarm, Flock, Boids, Decen-
tralized, Bio-Inspired, Robotics, Automatic Control
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Abstrakt

Tato práce představuje nový, plně decentralizovaný rojový algoritmus pro bezpilotńı
prostředky (UAV), jenž řeš́ı zásadńı omezeńı klasických model̊u hejn typu

”
boids“:

závislost na měřeńı relativńıch rychlost́ı, která jsou v decentralizovaných systémech
obt́ıžně spolehlivě zjistitelná. Integraćı stavových informaćı vyšš́ıho řádu - konkrétně
relativńıho zrychleńı a orientace okolńıch agent̊u - navrhovaná metoda eliminuje
potřebu zašumělých měřeńı rychlosti. Algoritmus a jeho odolnost v̊uči výraznému
senzorickému šumu jsou podrobně vyhodnoceny v simulaćıch. Nav́ıc byly prove-
deny venkovńı letové experimenty v reálném prostřed́ı, které potvrdily praktickou
použitelnost metody. Výsledky prokazuj́ı, že algoritmus udržuje bezpečnou separaci,
soudržnost i zarovnáńı i za podmı́nek silného senzorického šumu a v praktických
scénář́ıch překonává tradičńı implementace boids.

Kĺıčová slova Bezpilotńı Prostředky, UAV, Drony, Roje, Hejna, Boids, Decentral-
izace, Př́ırodou-Inspirované, Robotika, Autonomńı Ř́ızeńı
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1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have evolved remark-
ably over the last two decades. From niche hobbyist platforms to sophisticated systems with
uses across environmental exploration [10], disaster response [16], infrastructure inspection
[11], and even planetary exploration [7]. As individual UAV capabilities continue to improve,
research focus has increasingly shifted toward coordinating multiple UAVs operating collabo-
ratively as a swarm.

Collective behaviour (Fig. 1.1) is one of nature’s most successful survival strategies:
flocks of birds, schools of fish, and swarms of insects routinely achieve tasks - migration,
predator evasion, foraging - that would overwhelm a solitary animal. Translating these bio-
inspired principles to robotics holds the promise of systems that are scalable and robust.
Swarm robotics offers the potential to accomplish complex tasks more efficiently, robustly,
and scalably than single vehicles ever could.

Decentralized swarms combine the scalability of local, bio-inspired control laws with
the fault-tolerance of fully distributed decision-making. Centralized architectures funnel sens-
ing and control through a hub that can be jammed, overloaded, or physically destroyed. In
contrast, decentralized systems keep all control loops on-board, so the swarm continues to
function even when individual UAV or communication links go down. Because each agent
only needs relative neighbour states that can measured locally, the decentralized approach
eliminates both the bandwidth bottlenecks and the vulnerability of a master node.

Figure 1.1: Example of bird flocking in nature.

CTU in Prague Department of Cybernetics
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1.1 Related work

Swarming has been field of interest for many decades. Even today, many swarming
algorithms are build upon flocking rules introduced decades ago by fundamental swarming re-
search. Craig Reynolds’ 1987 Boids paper [24] introduced one of the most influential swarming
model, which is especially relevant for this thesis. Boids model consists of three flocking rules
(separation, alignment, cohesion) and each agent in the swarm follows these rules to produce
lifelike flocking behaviour. Another fundamental model is Vicsek model [23] introduced in
1995, in which all agents move at constant speed while trying to align with its neighbours.

The main issue with Boids, Vicsek and other similar models is that they consider each
agent as dimensionless and massless particle, which usually results in non-optimal performance
in robotic applications without further adjustments. The primary focus and motivation behind
these models were non-robotic applications, where these characteristics were not problematic.
Such applications include computer graphics, where models can be used to simulate large
amount of particles [21], or computer games, in which the movement of in-game characters
can be computed [22].

Advances in UAV hardware resulted in a lot more interest in aerial swarming. Many
aerial swarming models based on Boids were proposed and validated in real-world deployments
[14, 18, 19], including deployments with onboard relative localization [17]. Swarming has been
extensively researched in MRS for many years with applications in various fields [1, 2, 3, 4,
6]. Furthermore, MRS developed and deployed Boids swarming model with GPS localization
[15]. Similar models were later deployed in fully-decentralized fashion utilizing vision-based
relative localization [9, 12].

Accurate and robust relative localization has often been a barrier when deploying aerial
swarms. The easiest solution is to use GNSS, but that requires direct communication between
agents and in practice is not very accurate without the use of RTK. GNSS signal can also
be easily lost or even jammed, reducing the overall robustness of the swarm. Vision-based
relative localization methods can be more accurate and robust making them ideal for aerial
swarms. UVDAR [13] is one such system developed by MRS. These methods however present
their own issue - they cannot directly measure velocity data. While the velocity can still be
computed by differentiating multiple positions, it often introduces noise.

1.2 Contributions

In this thesis we present a new, fully-decentralized swarming algorithm for UAVs that
builds upon the classic boids flocking rules by incorporating higher-order state information, so
that each agent reacts to relative acceleration and orientation of its neighbours instead of their
relative velocities, which are difficult to measure in decentralized fashion. The algorithm is
validated in simulation with swarms ranging from a few up to a hundred of UAVs, and then on
a hardware platform in real-world outdoor flights utilizing robust Kalman-filter state fusion.
The results show that the proposed method preserves collision-avoidance and alignment under
severe sensor noise, thereby advancing the state of the art in aerial swarming better suited
for real-world deployment.

CTU in Prague Department of Cybernetics
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1.3 Problem Definition

We define swarm as group of at least 3 autonomous and decentralized UAVs. In this
thesis, terms flock and swarm are used interchangeably. Main goal is to develop new fully-
decentralized swarming model specifically designed for UAVs and their dynamics by integrat-
ing higher-order derivatives of positions, specifically orientation. Decentralization is key part
of the problem, fully-decentralized swarming model cannot communicate across UAVs and
must run completely independently on each UAV.

For measuring positions, we aim to use UVDAR 2 system. Orientation measurement
system is simulated by sending orientation data, since such systems are not yet ready. The
swarming model itself remains fully decentralized, meaning that it is not aware of this com-
munication.

The swarming model receives positions and orientations from these mentioned systems
and outputs velocity reference vector, which is routed to the onboard MRS MPC flight con-
troller. The swarming model is coded fully in C++ and integrated within Robot Operating
System (ROS) and MRS UAV System, allowing for real-world deployments.

1.4 Mathematical notation

Below is a Table 1.1 defining mathematical notation used throughout this thesis. This
notation holds true, unless specified otherwise.

x scalar
x,q vector, unit quaternion
x̂ normalized vector
∥x∥ norm of vector
ê1, ê2, ê3 elements of the standard basis
X matrix
I identity matrix
RB

A rotation matrix representing transformation from frame A to frame B
Ra(b) rotation around a axis by b angle
x⊺ transposed vector
X⊺ transposed matrix
qxq−1 vector x rotated with unit quaternion q, x treated as pure quaternion
µ mean
σ standard deviation

Table 1.1: Mathematical notation, nomenclature and notable symbols.

CTU in Prague Department of Cybernetics
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2 Swarming Algorithm

The original boids algorithm introduced three fundamental rules - separation, cohe-
sion and alignment. In this chapter, we present a new swarming algorithm that implements
the separation and cohesion behaviours but replaces alignment with a novel tilt-matching
mechanism.

2.1 Reference Frames

A reference frame (also known as a coordinate frame) is a defined coordinate system
used to precisely describe and interpret the position, orientation, and motion of the UAV
(Fig. 2.1). Selecting an appropriate reference frame is critical for navigation and control.
Below are definitions of reference frames used throughout this thesis.

world - Right-handed rectangular Cartesian coordinate frame fixed to the ground at
defined point with z axis pointing above the ground.
body - Body frame of the UAV, z-axis is parallel to the thrust force produced by the
propellers.
local - xyz axis are parallel to those of world frame, origin at the centre of the UAV.
Useful for describing positions, velocities and accelerations relative to the UAV.

In this thesis, we assume that all UAVs have the same world-frame.

W
ŵx

ŵy

ŵz

b̂x

b̂y

b̂z

B

W
ŵx

ŵy

ŵz

suav

L

l̂x

l̂y

l̂z

Figure 2.1: Visualisation of reference frames W (world), B (body) and L (local).
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2.2 Algorithm

Before turning to swarming model details, following two terms are defined to classify
UAVs:

Observer - Every UAV running the algorithm.
Target - Every UAV visible to given observer.

Furthermore, the target state vector s is defined as follows:

s =
[︁
p⊺,q⊺

]︁⊺
,

p =
[︁
px, py, pz

]︁⊺
,

q =
[︁
qw, qx, qy, qz

]︁⊺
,

where p is target position in observer-local-frame and q is target orientation in observer-local-
frame in form of unit quaternion. Every observer keeps track of all visible targets, their states
and its own orientation qo in observer-local-frame.

Note that the observer does not know its position and that target state does not include
velocity, which makes this algorithm ideal for real-world deployment in decentralized fashion
and is one of the main reasons, why alignment (velocity) matching is replaced by tilt matching.
We will go into more detail in later chapters.

Separation

The separation rule enforces safe distance between the observer and targets in order to
avoid collisions. At first, separation rate for every target in radius r is calculated by separation
rate function. In its simplest form, it can be represented as a linear function of the distance.
However, more complex function is needed to produce smoother and more realistic avoidance
behaviours. For that reason, following separation rate function (Fig. 2.2) is proposed:

g(d) =
r − d

z (d− dsafe)
, d ∈ (dsafe, r]

where d is distance, r is separation radius, z is decay rate and dsafe is minimum safe distance.
If target distance d is equal or lower than dsafe, it is clamped to dsafe + 0.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

d[m]

R
a
te

[m
/
s]

g(d) Safety Range Ignore Range

Figure 2.2: Separation rate, r = 10, z = 1.25, dsafe = 3.

CTU in Prague Department of Cybernetics



6/39 2.2. ALGORITHM

The separation vector for each target t in separation radius r is then calculated as

fst = −p̂t g(∥pt∥),

The overall separation vector is obtained by averaging these individual vectors (Fig. 2.3):

fs =

∑︁N
t=1 fst
N

.

−10 −5 0 5 10
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−5

0

5

10

t1
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t3

t4

t5

fs1

fs2
fs3

fs

r

x [m]

y
[m

]

(a) r = 10, z = 1.25, d = 3
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−10

−5

0

5
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t1

t2
t3

t4

t5

fs1

fs2 fs3

fs

r

x [m]

y
[m

]

(b) r = 10, z = 1.25, d = 5

Figure 2.3: Visual example of separation rule. Observer in the origin. Only blue targets t1,
t2, t3 within the separation radius r have impact on the final separation vector fs.

Cohesion

Opposite to separation rule, cohesion rule pulls the observer towards targets ensuring
that the swarm maintains unity (Fig. 2.4). The cohesion vector is calculated by averaging
positions of all visible targets and normalizing it:

pavg =

∑︁N
t=1 pt

N
,

fc = p̂avg.

Normalizing the cohesion vector is an intentional design decision. While leaving it unnor-
malized might seem to improve responsiveness when chasing targets, doing so risks instability.
As targets come into and out of visibility range, the vector’s magnitude could fluctuate dra-
matically. By fixing its length, we ensure a consistent, stable response regardless of current
swarm behaviour.

CTU in Prague Department of Cybernetics
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(a) Example 1.
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(b) Example 2.

Figure 2.4: Visual example of cohesion rule. Observer in the origin. Only blue targets t1,
t2, t3, t4 within visibility range are processed. Cohesion vector fc multiplied by 4 for better
readability.

Tilt Alignment

In the traditional boids model, alignment of the swarm is maintained by matching ve-
locity of targets. This requires accurately measuring relative velocity, which-without direct
communication-demands tracking multiple position samples and differentiating them numeri-
cally, a process that often introduces large noise in real-world UAV deployments. In contrast,
a UAV’s orientation can be measured directly and without delay.

Moreover, Reynolds’ original formulation assumes point-mass model and just velocity
matching fails to capture the complex UAV dynamics. For example, when a UAV suddenly
reverses direction, its velocity vector may take several seconds to catch up, whereas its orien-
tation changes instantaneously, making orientation-based alignment both more reliable and
better suited to UAVs.

To calculate the alignment vector, we first need to calculate pseudo-acceleration vector
to which the observer aligns. This is done by interpreting the z axis of the body frame in the
world coordinate frame and then projecting the resulting pseudo-acceleration vector onto xy
plane:

a+ = qêzq
−1,

a =
[︁
a+x , a

+
y , 0

]︁⊺
.

Next, the average target pseudo-acceleration is computed as

aavg =

∑︁N
t=1 at
N

.

Finally, the alignment vector (Fig. 2.5) is simply the difference between the average pseudo-
acceleration of targets and observer’s own pseudo-acceleration:

fa = aavg − ao.
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Since the pseudo-acceleration always has zero z element, this approach is best suited for
UAVs flying at relatively constant altitude. However, as will be shown in the next chapters,
this approach works well even for large swarms with complex 3D formations.
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(a) Zero observer pseudo-acceleration.
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(b) Non-zero observer pseudo-acceleration.

Figure 2.5: Visual example of tilt alignment rule. xy plane onto which are the pseudo-
accelerations projected. The circle represents the possible range of pseudo-acceleration vectors,
v on the edge of this circle would represent UAV flying 90-degree sideways.

Goal Tracking

So far all rules were designed to achieve cohesive, well aligned swarm with safe UAV
separation. Without any additional rules, UAVs would just swarm around some point, or the
whole swarm could even start drifting into random direction. One additional rule needs to be
introduced, that will push the observer towards given goal. This rule is special in that it is
not influenced by any target. The tracking vector is simply defined as:

ft = ĝ,

where g is goal position in observer-local-frame. Every observer can have its own separate
goal and thus this tracking vector can differ for each individual observer in the swarm.

Combining Vectors

The complete swarming algorithm is a result of the 4 described vectors. These vectors
are weighted and added resulting in the final velocity vector:

f = wsfs + wcfc + wafa + wtft,

where ws, wc, wa and wt are weights. The resulting velocity vector f is in world-frame and
represents the direction and velocity in which the observer shall fly. The onboard controller
of the observer is then responsible for matching this velocity vector.
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3 Estimation Pipeline

Making the algorithm robust against sensor noise is critical for real-world deployment,
where the lack of precision of position and orientation measurements can significantly impact
overall performance. In this chapter we introduce the deployment platform and its related
on-board localization systems. Effective kalman filtering technique for position measurements
is then proposed and validated.

3.1 Hardware Platform

RoboFly (Fig. 3.1) was chosen as target hardware platform for this thesis. RoboFly is
lightweight research platform ideal for both indoor and outdoor testing developed by F4F1 -
a MRS spin-out. The platform runs upon the MRS UAV System and is equipped with Rasp-
berry Pi 5 computer2, enabling demanding workloads including computer vision algorithms.
This is supported by two wide-angle cameras, one facing forwards and the other backwards.
Furthermore, the new UVDAR 2 localization system is supported - main reason for choosing
RoboFly platform.

Figure 3.1: RoboFly UAVs at Temešvár MRS camp.

3.2 Measuring Positions

Robust system for measuring target positions is often the biggest hurdle when trying to
deploy swarming algorithms in truly decentralized fashion. UVDAR 2, the new and improved
version of the well established UVDAR [13] developed in MRS, aims to provide reliable and
very accurate positioning system in real-world outdoor conditions. This is achieved by using
UV markers on every UAV in combination with UV-filtered cameras (Fig. 3.2), resulting in
great resistance against the widely varying illumination conditions encountered in outdoors
environments. UVDAR 2 uses UV markers just to measure bearing while the distance is
measured by time-of-flight UWB.

1F4F details: https://fly4future.com/about-us/.
2Raspberry Pi 5: https://www.raspberrypi.com/products/raspberry-pi-5/
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Figure 3.2: Example of what the UV-filtered camera sees. 640x400 camera resolution. Points
represent UV markers in 5x7 grid on calibration board.

We validated UVDAR 2 performance in the lab (Fig. 3.3). With correct calibration
and optimal settings, the system can localize targets up to 20 meters away under realistic
illumination conditions. The precision error can be described as gaussian noise with standard
deviation of only 0.1 meters in ideal scenarios. The biggest limitation is the FOV of cameras,
which is 160 degrees horizontal and 120 degrees vertical, leaving 40 degree dead angle on the
left and right side of the UAV. This can be circumvented by flying at similar altitude and
constantly rotating all UAVs in the swarm. 40 degrees-per-second was chosen as the optimal
rotation speed, as this speed does not negatively affect UAV control at normal speeds while
removing the danger of not localizing targets for long durations and colliding.
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Figure 3.3: Example of UVDAR 2 visibility on RoboFly platform. Top-down view. All UAVs
flying at same altitude. Blue dots represent visible targets, grey dots not visible targets.

3.3 Measuring Orientations

Unlike the original UVDAR, the UVDAR 2 does not provide orientation measurements.
There are multiple methods being developed in MRS including ML-based vision algorithms,
which can estimate the orientation directly from camera feed (Fig. 3.4). While these methods
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are promising, they are not yet ready for deployment and developing such methods further
is out-of-scope for this thesis. For this reason, measuring orientation is emulated with ROS
node sending data over Wi-Fi in the background. The swarming algorithm itself is not aware
of this and still acts in fully decentralized fashion as if orientation data were measured locally.

Figure 3.4: Example of vision based algorithm for measuring orientation developed in MRS
by Tobias Vinklarek.

3.4 Estimating acceleration

While the proposed swarming model does not require acceleration data, it can be used as
input for kalman filters. Although the kalman filter could use orientation itself, this approach
allows us to create linear filter, which is easier to implement, less computationally intensive
and numerically stable. To estimate acceleration, we need the already measured orientation
data in combination with total thrust of the UAV.

First step is computing rotation matrix RW
B , representing transformation from body

frame to world frame. This step depends on the format in which the orientation is represented.
Unit quaternion q =

[︁
qw, qx, qy, qz

]︁⊺
is recommended, since it is hard to misinterpret

RW
B =

⎡⎣1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qwqx + qyqz) 1− 2(q2x + q2y)

⎤⎦ .
In case of rotation angles roll ϕ, pitch θ and yaw ψ, it is important to specify the order of
rotations. In robotics, order ϕ → θ → ψ is commonly used, the matrix is computed as three
consecutive rotations

RW
B = Rz(ψ)Ry(θ)Rx(ϕ),

Rx(ϕ) =

⎡⎣1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

⎤⎦ ,
Ry(θ) =

⎡⎣ cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎤⎦ ,
Rz(ψ) =

⎡⎣cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦ .
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The acceleration is then computed as

a =
1

m
RW

B

⎡⎣ 0
0
fth

⎤⎦−

⎡⎣00
g

⎤⎦
where m is mass in kg, fth is total thrust in N and g is gravitational constant.

This requires measuring total thrust and while there are some methods being developed
at MRS, such as vision-based methods using event cameras, they are not yet proven to be
precise enough. If assumption of level-flight at constant altitude is made, the total thrust can
be estimated as:

mg − ê⊺3R
W
B

⎡⎣ 0
0
fth

⎤⎦ = 0,

fth =
mg

ê⊺3R
W
B ê3

.

The acceleration estimate is not completely accurate as it ignores many physical at-
tributes such as air drag (Fig. 3.5). The estimation could also yield very wrong results, if the
UAV is flying against strong winds and has to tilt to maintain position. This however is not
an issue for our use-case, since we are only interested in relative acceleration between observer
and target, so if we assume that both experience similar wind currents (fair assumption as
they are close), this effect cancels out. The estimate is accurate-enough for many use-cases,
such as input for kalman filters.
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Figure 3.5: Acceleration estimation accuracy. UAV flying at constant altitude, total thrust
estimated.

3.5 Position Kalman Filter

A Kalman filter is a powerful algorithm that fuses noisy sensor measurements with
a physical model predicting how state evolves over time. At each step it predicts the new
state based on the previous state, then adjusts that new state using the newest measurement,
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weighting each according to its uncertainty. By continuously repeating this predict-update
cycle, the filter effectively smooths out noise and produces more accurate estimate.

Model Definition

First we define the internal state x of the physical model

x =
[︁
px, vx, ax, py, vy, ay, pz, vz, az

]︁⊺
,

where
[︁
px, py, pz

]︁⊺
is position,

[︁
vx, vy, vz

]︁⊺
is velocity and

[︁
ax, ay, az

]︁⊺
is acceleration. The

used state transition matrix A represents double integrator for each axis and is defined as

Ablock =

⎡⎣1 ∆t 1
2(∆t)

2

0 1 ∆t
0 0 1

⎤⎦ ,
A =

⎡⎣Ablock 0 0
0 Ablock 0
0 0 Ablock

⎤⎦ .
We use position and acceleration measurements to correct predictions, measurement vector z
and its mapping matrix H are defined as

z =
[︁
px, py, pz, ax, ay, az

]︁⊺
,

H =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Lastly we introduce covariance matrices Q and R representing uncertainty of the physical
model and measurements respectively. The values are fine-tuned to work with the constraints
of introduced localization systems. The uncertainty of physical model accumulates over time
and is thus dependent on time delta between iterations.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.05∆t 0 0 0 0 0 0 0 0
0 0.05∆t 0 0 0 0 0 0 0
0 0 0.05∆t 0 0 0 0 0 0
0 0 0 0.05∆t 0 0 0 0 0
0 0 0 0 0.05∆t 0 0 0 0
0 0 0 0 0 0.05∆t 0 0 0
0 0 0 0 0 0 0.05∆t 0 0
0 0 0 0 0 0 0 0.05∆t 0
0 0 0 0 0 0 0 0 0.05∆t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R =

⎡⎢⎢⎢⎢⎢⎢⎣

0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 0.0025 0 0
0 0 0 0 0.0025 0
0 0 0 0 0 0.0025

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The great thing about this setup is that it not only works for the absolute position
filtering, if we assume that all data is relative, the filter still works as expected and is thus
ideal for improving robustness of our swarming model.

Iteration

At start, the internal state vector x is initialized to 0 and covariance matrix P is
initialized as identity matrix. The first step, the prediction step, involves predicting the next
state and covariance

x
′
k = Axk−1,

P
′
k = APk−1A

⊺ +Q.

The second step, the update step, computes kalman gain and corrects the state and covariance
accordingly

Kk = Pk−1H
⊺(HPk−1H

⊺ +R)−1,

xk = x
′
k +Kk(zk −Hx

′
k),

Pk = (I−KkH)P
′
k.

Accuracy

Selected parameters of the filter give large weight to measurements, meaning that the
output is not completely smooth (Fig. 3.6). This is intentional, because giving too large weights
to physical model can result in the internal state not reacting quickly to changes. The filter
still effectively filters out the largest deviations in the noise. Kalman filter is tested under
real-world conditions, meaning that latency is added to orientation measurements to account
for delays in Wi-Fi communications (3.3) and limited FOV (Fig. 3.2) is simulated.
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Figure 3.6: Kalman filter accuracy under real-world conditions.
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4 Implementation and Evaluation Metrics

In this chapter we go over implementation details, introduce simulator used for testing
and propose metrics for evaluating swarm performance.

4.1 MRS UAV System

The MRS UAV System is an open-source software framework developed by the Multi-
Robot Systems Group at Czech Technical University in Prague, designed to assist researchers
in advanced R&D in autonomous UAV systems, from speed racing and decentralized swarming
to GNSS-denied coordination of multi-UAV formations. 1

The swarming algorithm and estimation pipeline introduced in previous Chapters 2,3 is
implemented in C++ in ROS1 [20] and relies on MRS UAV System [8] (Fig. 4.1). The MRS
UAV System is a comprehensive framework providing the core software components used
throughout this thesis. This includes custom messages, UAV controllers, state estimators,
UAV simulators, reference frame transformation utilities and more.

UVDAR Tilt

Swarming Model

MPC Controller

HW API

UAV1

UVDAR Tilt

Swarming Model

MPC Controller

HW API

UAVN

· · · · · · · · ·

WiFi Base Station

Figure 4.1: Diagram of simplified UAV setup.

4.2 Simulator

Multirotor Simulator (Fig. 4.2), part of the MRS UAV system, is the simulator of choice
for this thesis. It strikes the perfect balance between simulation precision and speed. While not
as precise as Gazebo Simulator2, it allows for real-time simulations with hundreds of UAVs.
This is crucial for testing and fine-tuning the swarming algorithm. The simulator itself does
not provide GUI, so RVIZ3 is used for visualization.

1Official MRS UAV System documentation: https://ctu-mrs.github.io/.
2Official Gazebo site: https://gazebosim.org/home.
3RVIZ details: https://wiki.ros.org/rviz.
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Figure 4.2: MRS Multirotor Simulator, visualized with RVIZ.

4.3 Evaluation Metrics

In this thesis, we mainly focus on swarm stability, which is crucial for real-world deploy-
ments, because even small instabilities can trigger chaotic behaviour and cause the formation
to break apart. To assess stability, we evaluate separation and alignment of the swarm.

Separation

Separation is the most important factor for us when evaluating swarms, since preventing
expensive and dangerous UAV collisions is of high priority. To properly evaluate separation,
we propose three main metrics - average distance davg, minimum distance dmin and maximum
distance dmax.

The average distance describes separation distance between observer and its closest
target averaged over all observers in the swarm. The minimum distance describes the minimum
distance between any two UAVs in the swarm. In contrast, maximum distance describers
maximum distance between any observer and its closest target. They are mathematically
defined as

davg =
1

N

∑︂
b∈B

min
t∈Tb

(∥t∥),

dmin = min
b∈B

min
t∈Tb

(∥t∥),

dmax = max
b∈B

min
t∈Tb

(∥t∥),

where N is a number of observers, B is a set of observers and T is set of target positions
relative to given observer. With these metrics, we also define metrics drange and ddiff

drange = (dmin, dmax),

ddiff = dmax − dmin.

Together these metrics provide valuable insight into separation stability within the
swarm. The average distance davg gives us idea how the swarm behaves as a whole, mini-
mum distance dmin helps us understand if there is instability somewhere in the swarm, and
maximum distance dmax shows if the whole swarm is cohesive. The minimum distance dmin

should never approach the minimum safe distance set by parameter dsafe (Section 2.2.1).
Furthermore, the ddiff should not be large.
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Alignment

For evaluating alignment, we use metric based on polarization function mathematically
defined as

p =

⃦⃦⃦⃦
⃦ 1

N

N∑︂
i=1

{︄
v̂i, ∥vi∥ ≥ 0.1

êz, otherwise

⃦⃦⃦⃦
⃦ ,

where N is number of UAVs in the swarm and v is velocity of UAVs. The resulting number
p ranges from 0 to 1, where 0 means that all UAVs within the swarm are flying into opposite
directions, 1 in contrast represents all UAVs flying into the same direction.

When the swarm is just hovering around some point, it can sometimes become so stable
that it is almost not moving at all and only minor insignificant velocities are observed as
a result. These velocities are not aligned and can be considered as just noise. This however
can then result in terrible polarization values, even though the swarm is stable and perfectly
aligned. To overcome this, every stationary UAV with velocity below threshold 0.1 m/s has
its velocity set to vector êz. As a result, all stationary UAVs are considered perfectly aligned.
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5 Baseline Comparison

In this chapter, the new swarming algorithm proposed in Chapter 2 is compared against
the baseline boids swarming model in simulations with large number of UAVs. Both ap-
proaches are tested under ideal conditions, meaning that no noise is introduced to position,
orientation and velocity measurements. Because of that, the estimation pipeline proposed in
Chapter 3 is not used, position and orientation (velocity in case of baseline) data is used
directly without any further filtering. We do not simulate the whole control stack, we only
simulate UAV dynamics, which allows us to test large swarms. The testing is organized into
two parts:

2D swarms - All UAVs are flying at the same constant altitude.
3D swarms - UAVs do not have fixed altitude.

Within each part, we consider two scenarios:

Outbound goal - All UAVs head freely toward a distant common goal. Because each
observer experiences similar tracking force, this scenario is relatively easy to manage.
Central goal - The goal is placed at the swarm’s centre, causing UAVs to converge
inward. This compression often leads to erratic behaviour, making it one of the most
challenging scenarios the swarm can come across. While this scenario basically never
occurs in practice (we would decrease target force as goal is approached), it allows us
to test the limits of both models.

5.1 Baseline Implementation

Because Reynolds’ original Boids paper leaves the precise formulation of each rule open
to interpretation, it is essential to specify our baseline in detail. In this thesis, the baseline
model retains the same separation, cohesion, and tracking rules as the proposed model, but
replaces our novel tilt-matching rule with the traditional velocity-matching rule:

fa =

∑︁N
t=1 vt

N
,

where v is velocity of the target in observer-local-frame (relative velocity). This approach is
similar to that in MRS Boids implementation [12, 15].

5.2 Algorithm weights

Weight Baseline Enhanced

ws 5.0 5.0
wc 1.0 1.0
wa 1.5 10.0
wt 2.5 2.5
r 10.0 10.0
z 1.5 1.5

dsafe 5.0 5.0

Table 5.1: Weights used in baseline comparison.
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The alignment weights differ because the alignment rule is fundamentally different,
other weights are the same (Table 5.1). Fine-tuning these values is difficult, iterative process.
Proposed value result in swarm achieving similar speeds. Maximum visibility distance is set
to 20 m replicating UVDAR capabilities.

5.3 2D Swarms

In this first evaluation against the baseline Boids algorithm, we deploy a swarm of 20
UAVs constrained to a common, constant altitude.

Outbound Goal

In this easier scenario, both version work almost identically (Fig. 5.1). Both keep safe
separation distances and stay perfectly aligned. There are only minor fluctuations in the
baseline minimum distances, indicating small instability within the swarm.

0 10 20 30
7

8

9

10

Time [s]

D
is
ta
n
ce

[m
]

baseline davg davg
baseline dmin dmin

baseline dmax dmax

0 10 20 30
0.98

0.99

1

Time [s]

P
ol
ar
iz
at
io
n
[−

] baseline p p

Figure 5.1: Swarm of 20 UAVs flying towards common distant goal at fixed altitude.

Central Goal

In central goal, we can see clear differences (Fig. 5.2, 5.3). As the swarm compresses,
the baseline algorithm separation starts oscillating and polarization quickly drops. In contrast,
the enhanced model has more stable separation with smaller variance between dmin and dmax.
The enhanced model also manages to hold better polarization for much longer, but as small
instabilities develop, the polarization and overall stability drops towards the end.
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Figure 5.2: Swarm of 20 UAVs flying towards common central goal at fixed altitude.
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Figure 5.3: Formation of 20 UAVs at the end of Fig. 5.2. Goal at coordinates x = 0m, y = 0m.

5.4 3D Swarms

Extending the comparison to three dimensions, we simulate a larger formation of 100
UAVs with unrestricted altitude, allowing the swarm to form into complex structures.

Outbound Goal

The results (Fig. 5.4) for this scenario mirror 2D results. Both models are stable, have
good separation and are perfectly aligned. Measurements started few seconds after initializa-
tion of both models and since the baseline model took more time to get into final formation,
baseline dmax is higher at the start.
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Figure 5.4: Swarm of 100 UAVs flying towards common outbound goal.

Central Goal

Results for this scenario showcase the largest improvement over the baseline (Fig. 5.5,
5.6). The enhanced model has perfect separation and holds almost perfect alignment.
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Figure 5.5: Separation evaluation. Swarm of 100 UAVs flying towards common central goal.

(a) Baseline (b) Enhanced

Figure 5.6: Formation of 100 UAVs at the end of Fig. 5.5. RViz used for visualization.

5.5 Summary

The results shown in this chapter showcase the great potential of the proposed model
(Table 5.2). While both worked well and neither ever approached dangerous separation dis-
tances, the new model matched or outperformed the baseline in every scenario, with major
improvements especially in the central goal scenarios. The proposed model also performed
well in 3d scenarios, proving that the new tilt-matching rule is well suited not only for 2d
swarms, but also complex 3d swarms. Crucially, all these gains are achieved without requir-
ing hard-to-measure target velocity data, only requiring the directly-measurable position and
orientation data.
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Scenario Model µ(p) σ(p) σ(davg) σ(ddiff ) µ(ddiff )

baseline 1.00[−] 0.00[−] 0.16[m] 0.20[m] 1.33[m]
enhanced 1.00[−] 0.00[−] 0.20[m] 0.15[m] 1.29[m]2D out.

improvement 0[%] 0[%] −25[%] 25[%] 3[%]

baseline 0.35[−] 0.20[−] 0.10[m] 0.39[m] 2.37[m]
enhanced 0.87[−] 0.15[−] 0.02[m] 0.10[m] 1.46[m]2D cent.

improvement 149[%] 25[%] 80[%] 74[%] 38[%]

baseline 1.00[−] 0.00[−] 0.16[m] 0.61[m] 1.98[m]
enhanced 0.99[−] 0.00[−] 0.14[m] 0.13[m] 1.62[m]3D out.

improvement −1[%] 0[%] 13[%] 79[%] 18[%]

baseline 0.44[−] 0.14[−] 0.03[m] 0.29[m] 2.25[m]
enhanced 0.84[−] 0.05[−] 0.01[m] 0.11[m] 1.86[m]3D cent.

improvement 91[%] 64[%] 67[%] 62[%] 17[%]

Table 5.2: Statistics for the simulated swarm. Population standard deviation used.
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6 Full System Simulation

In this chapter the new swarming model introduced in Chapter 2 is tested in simulator
under real-world conditions. We simulate all limitations of localization systems described in
Chapter 3. All APIs running onboard of real UAV are also simulated, such as hardware API
and flight controllers.

We focus on smaller swarms consisting of 3 and 5 UAVs flying at same constant altitude,
which allows us to estimate acceleration just with orientation data as explained in Section 3.4.
All UAVs within the swarm are running kalman filters as described in Section 3.5 to improve
the accuracy of noisy position measurements.

6.1 Testing Setup

To test the swarm, we consider a realistic scenario where the swarm follows pre-defined
path, which is defined as sequence of points. The swarm flies point-to-point until goal is
reached. Each point can be considered as point-of-interest, which can be localized by vision-
based methods. For simplicity, points along the path are located via GNSS in this thesis.

Because of the decentralized nature of the model, every UAV has its own copy of the
path, which it follows on its own. Every UAV can be flying towards different point at any
given time. As UAV comes within certain radius of its current point along the path, it updates
to the next point in the sequence.

The difficulty of the path is mainly determined by how much UAVs have to turn when
switching to next point on the path. We consider two shapes (Fig. 6.1) - square path and
heptagon path. The square path represents the more difficult case, where UAVs have to make
90-degree turns.
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(a) Square path.
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(b) Heptagon path.

Figure 6.1: Visualization of paths. Circles around points represent area (10 m radius), in which
UAVs switch to next point along the path.
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6.2 Algorithm Weights

For this chapter, we choose slightly different weights optimized for smaller swarms flying
in 2d formations. Proposed parameters (Table 6.1) result in swarm speed around 3-4 m/s when
flying between points along the path.

Weight Value

ws 2.5
wc 1.75
wa 7.5
wt 3.0
r 10.0
z 1.25

dsafe 3.0

Table 6.1: Weights used in simulation and deployment.

6.3 Controller Constraints

Since we are simulating the whole control stack, we have to specify MPC controller
constraints. While our model itself can provide any velocity reference to the controller, the
controller can limit maximum speed, acceleration, rotation and so on. Following constraints
(Table 6.2) were used, which were optimized to work well with model weights (Table 6.1):

Constraint Value

horizontal speed 4.0[m/s]
horizontal acceleration 1.5[m/s2]

horizontal jerk 40.0[m/s3]
yaw 40.0[deg/s]
tilt 60.0[deg]

Table 6.2: Controller constraints used in simulation.
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6.4 3 UAVs

We start by evaluating the smallest possible swarm - group of 3 UAVs. Since the swarm
is small, we set radius around points along the path to 9 m, with the final point being exception
at 12 m. This is to ensure better swarm stability when coming to a stop at the end of path.

Square Path

When flying along the square path, the small swarm manages to maintain safe separation
while being cohesive (Fig. 6.2, 6.3, Table 6.3). Results clearly show when the swarm arrives
to points along the path, specifically at times 35, 65, 95, 125 s. This is in almost perfect
intervals of 30 seconds, which is the result of relatively constant speed. It also represents the
only times, when the swarm loses perfect polarization and distances between UAVs lower.
During the short periods at the start and at the end (0-10, 125-140 s), the swarm just hovers
in place resulting in very low speeds and not ideal polarization values.
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Figure 6.2: Swarm of 3 UAVs. Flying along square path (6.1a). Marker every 2 s. First and
last few seconds of flight removed for readability.

CTU in Prague Department of Cybernetics



26/39 6.4. 3 UAVS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
2

4

6

8

10

Time [s]

D
is
ta
n
ce

[m
]

dsafe davg drange

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

1

2

3

4

5

Time [s]

V
el
o
ci
ty

[m
/
s]

polarization avarage velocity velocity range

0

0.2

0.4

0.6

0.8

1

P
ol
ar
iz
at
io
n
[−

]

Figure 6.3: Swarm of 3 UAVs. Flying along square path (6.1a).
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Figure 6.4: Swarm of 3 UAVs. Flying along heptagon path (6.1b).
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Heptagon Path

The small swarm performs even better on heptagon path (Fig. 6.4, 6.5, Table 6.3),
showcasing that the smaller changes in direction make this path easier than the square path.
It is still easy to see when swarm arrives to points along the path at times 16, 29, 42, 55, 70,
83, 96 s, but both polarization and distances between UAVs are affected much less. Velocity
reaches similar levels of square path test, although with much less pronounced variations.
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Figure 6.5: Swarm of 3 UAVs. Flying along heptagon path (6.1b). Marker every 2 s. First and
last few seconds of flight removed for readability.
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6.5 5 UAVs

We now deploy larger swarm consisting of 5 UAVs. This allows us to better understand
the scalability of the model, while still being easy to visualize. Because the swarm is now larger,
we set radius around points along the path to 15 m, with the final point being exception at
20 m.

Square Path

Same as with the smaller swarm, the larger swarm manages to maintain safe distances
while being cohesive (Fig. 6.6, 6.7, Table 6.3). Drops in separation and polarization can again
be observed in intervals of around 30 s as UAVs approach points along the path. Drops in
polarization are more pronounced than in smaller swarms, which is expected, because there
is large time difference between first and last UAV approaching the point, causing larger
misalignment. The minimum distance remains same, indicating that the model scales well.
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Figure 6.6: Swarm of 5 UAVs. Flying along square path (Fig. 6.1a). Marker every 2 s. First
and last few seconds of flight removed for readability.
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Figure 6.7: Swarm of 5 UAVs. Flying along square path (Fig. 6.1a).
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Figure 6.8: Swarm of 5 UAVs. Flying along heptagon path (Fig. 6.1b).
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Heptagon Path

As with the smaller swarm, the heptagon path proves to be easier to traverse (Fig. 6.8,
6.9, Table 6.3). Only minor drops in polarization can be seen as swarm arrives to points.
There is one significant drop in separation towards the end, as the swarm comes to sudden
stop, but it remains above minimum safe level.

−70 −50 −30 −10 10 30 50 70
−20

0

20

40

60

80

100

120

x [m]

y
[m

]

path points uav1 uav2 uav3 uav4 uav5

Figure 6.9: Swarm of 5 UAVs. Flying along heptagon path (Fig. 6.1b). Marker every 2 s. First
and last few seconds of flight removed for readability.

Swarm Size Path µ(p) σ(p) σ(davg) σ(ddiff ) µ(ddiff )

square 0.94[−] 0.15[−] 0.43[m] 0.29[m] 0.25[m]
3

heptagon 0.94[−] 0.18[−] 0.42[m] 0.44[m] 0.41[m]

square 0.88[−] 0.24[−] 0.43[m] 0.84[m] 1.44[m]
5

heptagon 0.89[−] 0.22[−] 0.40[m] 0.84[m] 1.38[m]

Table 6.3: Statistics for the simulated swarm. Population standard deviation used.
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7 Deployment

In this chapter, we validate the results from previous Chapter 6 on real-world experi-
ments. We focus particularly on smaller swarms consisting of 3 UAVs flying along the heptagon
path, as shown in simulation Section 6.4.2. We use the same algorithm weights as in previous
Chapter 6.2.

7.1 Hardware Platform

Due to hardware issues with Roboflyes, we were forced to switch to different UAV
platform at the last minute. The platform used for deployment is X500 [5], a modular research
platform developed at MRS (Fig. 7.1). This platform is well established and has been used at
MRS for many years. Unfortunately this limits us to swarm of only 3 UAVs.

Another drawback of this platform is that it does not support UVDAR 2 as of time of
the deployment, which is crucial part of our estimation pipeline. For this reason, ROS node
simulates UVDAR 2 by sending data over Wi-Fi in the background, similar to orientation
measurements. As with orientation, the swarming algorithm itself is not aware of the com-
munication in the background and acts in decentralized fashion. GPS by itself would not be
accurate enough to simulate UVDAR 2, for this reason RTK base station was also deployed.

Figure 7.1: X500 UAV at Temešvár MRS camp. Not the exact setup used in deployment.

7.2 Controller Constraints

We use more conservative constraints (Table 7.1), so that the risk of failure is low.
Unfortunately due to time constraints and bad weather conditions, deployments at full speed
shown in Chapter 6 were not possible. These changes mostly affect top speed when flying
between points along the path.

Setting Value

horizontal speed 1.25[m/s]
horizontal acceleration 1.0[m/s2]

horizontal jerk 40.0[m/s3]
yaw 40.0[deg/s]
tilt 60.0[deg]

Table 7.1: Controller constraints used in deployment.
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7.3 Deployment Results

The results show that, even in the real-world, the swarming model is able to maintain
safe separation while being cohesive (Fig. 7.2, 7.3, Table 7.2). The minimum distance between
UAVs never approaches minimum safe distance, with margins being even higher than in
simulation, which is caused by lower overall speed. While the polarization is not as perfect as
in simulation, it is still good.

The results are especially significant, because they were achieved under suboptimal
conditions, showcasing the robustness of the proposed model. Severe wind disturbances were
observed during flight, which negatively impacted control characteristics of UAVs. Further-
more, the latency spikes in communication reaching up to 2 s were common. We strongly
believe that the overall performance would be even better, if deployed under more favourable
conditions.
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Figure 7.2: Swarm of 3 UAVs deployed in real-world. Flying along heptagon path (6.1b).
Marker every 2 s. First and last few seconds of flight removed for readability.
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Figure 7.3: Swarm of 3 UAVs deployed in real-world. Flying along heptagon path (Fig. 6.1b).

µ(p) σ(p) σ(davg) σ(ddiff ) µ(ddiff )

0.77[−] 0.13[−] 0.44[m] 0.74[m] 0.90[m]

Table 7.2: Statistics for swarm of 3 UAVs. Population variance used.
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7.4 Deployment Footage

Footage captured from the real-world deployment can be seen below (Fig. 7.4), showcas-
ing safe separation while being cohesive. Examining videos in attachments (refer to Chapter A)
is highly recommended to get better idea of the overall real-world performance. Results shown
in this chapter correspond to round 2 footage. Shots from multiple angles are included.

Figure 7.4: Illustration photo merged from multiple video frames. Positions not completely
accurate due to camera movement, for precise positions refer to Fig. 7.2. Compared to Fig. 7.2,
the image is rotated approximately 45 degrees counter-clockwise. Shot on DJI Mavic 3.
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8 Conclusion

In this thesis, we have successfully developed a new fully-decentralized swarming algo-
rithm expanding on the ideas of the original Boids model. The new algorithm was integrated
into ROS and MRS UAV System. Moreover, robust estimation pipeline was proposed with
heavy focus on real-world deployment.

Simulations on large-scale swarms proved that use of second-and-higher-order data can
be beneficial and produce better results then baseline Boids model, especially for real-world
deployments. The model was also tested in simulator under real-world conditions, showing the
robustness against severe sensor noise. These results were confirmed by real-world deployment
on small swarms.

To summerize, following tasks from the assignment were successfully accomplished in
this thesis:

Decentralized swarming was thoroughly studied, with main focus on Boids model.
The proposed, fully-decentralized model, was fully integrated in ROS and MRS UAV
System and written in C++.
The proposed model replaced traditional velocity-matching function with tilt-matching
function, utilizing second-derivative data.
The proposed model was evaluated against baseline model on large-scale swarms.
Robust estimation pipeline was developed, and the proposed model was tested under
real-world conditions.
The proposed model was successfully deployed in real-world.

8.1 Future work

This work has shown the potential of the proposed model. We suggest further research
in following areas:

Agile swarm deployment - deploy the algorithm without speed limitations. This
thesis already proved the viability of higher-speed flight, but only in simulations.
Large swarm deployment - deploy the algorithm with at least 5 UAVs to better
evaluate real-world swarm performance.
Decentralized localization deployment - in this thesis, decentralized localization
systems were only simulated due to hardware limitations.
Dynamic model parameters - it is impossible to optimize the model parameters, so
that they work the best in every possible situation. We believe that system for dynam-
ically optimizing model parameters based on swarm behaviour could greatly improve
overall performance.
Obstacle avoidance - development of obstacle avoidance for the proposed model could
increase its usability in real-world deployments.
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A Appendix: Attachments

Attachments for this thesis contain the following:

ROS Source - source code of minimalistic ROS node with the swarming model.
Deployment Videos - videos from many angles, including top-down view.

Due to CTU file-size limitations, the quality of videos directly included with this thesis is
rather low. High quality deployment videos can be seen on YouTube or downloaded from
MRS NAS:

YouTube - quick and easy access, link1.
MRS NAS - original full quality videos, link2.

1https://www.youtube.com/playlist?list=PL54lWnd1em1foCfidZ01hRsF2nwICWiO9
2https://nasmrs.felk.cvut.cz/index.php/s/Pqy0np5Qlff9zz8

CTU in Prague Department of Cybernetics

https://www.youtube.com/playlist?list=PL54lWnd1em1foCfidZ01hRsF2nwICWiO9
https://nasmrs.felk.cvut.cz/index.php/s/Pqy0np5Qlff9zz8
https://www.youtube.com/playlist?list=PL54lWnd1em1foCfidZ01hRsF2nwICWiO9
https://nasmrs.felk.cvut.cz/index.php/s/Pqy0np5Qlff9zz8
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B Appendix: AI Software

AI software was used in development of this thesis. More specifically, Large Language Models
(LLMs) were used to generate parts of plotting and rosbag processing scripts. AI software was
not used to write or rephrase any text in this thesis.

Ollama1 - secure platform for self-hosting LLM models.
ChatGPT2 - various LLM models provided by OpenAI.

1Ollama: https://ollama.com/
2ChatGPT: https://chatgpt.com/

CTU in Prague Department of Cybernetics

https://ollama.com/
https://chatgpt.com/
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