Jonáš Kříž
![]() |
|
Jonáš Kříž and Vojtěch Vonásek. Asymptotically optimal path planning with an approximation of the omniscient set. IEEE Robotics and Automation Letters ():1-8, 2025. arXiv video code, DOI BibTeX
@article{kriz2025asymptotically, author = "K\v{r}\'{i}\v{z}, Jon\'{a}\v{s} and Von\'{a}sek, Vojt\v{e}ch", journal = "IEEE Robotics and Automation Letters", title = "Asymptotically optimal path planning with an approximation of the omniscient set", year = 2025, volume = "", number = "", pages = "1-8", keywords = "Costs;Convergence;Planning;Convolutional neural networks;Training;Nearest neighbor methods;Euclidean distance;Data mining;Convex hulls;Collision avoidance;Motion and Path Planning;Planning, Scheduling and Coordination", doi = "10.1109/LRA.2025.3540627", video = "https://www.youtube.com/watch?v=oeV3-_c1-t0", code = "https://github.com/BipoaroXigen/JPL", arxiv = "https://arxiv.org/abs/2503.16164" }
Michal Vavrecka, Jonas Kriz, Nikita Sokovnin and Gabriela Sejnova. Modular Reinforcement Learning In Long-Horizon Manipulation Tasks. In Michael Wand, Kristína Malinovská, Jürgen Schmidhuber and Igor V Tetko (eds.). Artificial Neural Networks and Machine Learning – ICANN 2024. 2024, 299–312. BibTeX
@inproceedings{vavrecka2024modular, author = "Vavrecka, Michal and Kriz, Jonas and Sokovnin, Nikita and Sejnova, Gabriela", editor = {Wand, Michael and Malinovsk{\'a}, Krist{\'i}na and Schmidhuber, J{\"u}rgen and Tetko, Igor V.}, title = "Modular Reinforcement Learning In Long-Horizon Manipulation Tasks", booktitle = "Artificial Neural Networks and Machine Learning -- ICANN 2024", year = 2024, publisher = "Springer Nature Switzerland", address = "Cham", pages = "299--312", isbn = "978-3-031-72359-9" }